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Editors' Preface 
Birkhauser Boston, Inc., will publish a series of carefully selected mono­
graphs in the area of mathematical modeling to present serious applications 
of mathematics for both the undergraduate and the professional audience. 

Some of the monographs to be selected and published will appeal more 
to the professional mathematician and user of mathematics, serving to 
familiarize the user with new models and new methods. Some, like the 
present monograph, will stress the educational aspect and will appeal more 
to a student audience, either as a textbook or as additional reading. 

We feel that this first volume in the series may in itself serve as a model 
for our program. Samuel Goldberg attaches a high priority to teaching stu­
dents the art of modeling, that is, to use his words, the art of constructing 
useful mathematical models of real-world phenomena. We concur. It is 
our strong conviction as editors that the connection between the actual 
problems and their mathematical models must be factually plausible, if not 
actually real. 

As this first volume in the new series goes to press, we invite its readers 
to share with us both their criticisms and their constructive suggestions. 

The Editors 
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Preface 

This book illustrates the use of probability ideas and techniques in the social 
sciences. Recent curriculum reports* have emphasized the importance of 
applications for the undergraduate mathematics curriculum. The present 
work includes seven expository articles intended to acquaint readers with 
a variety of widely used probabilistic models within social science and to 
bring out some basic features of mathematical modeling. 

I do not imply in offering this volume that social science models are 
more ideal for illustrating applications of probability than other subjects. 
A similar set of articles using examples from biology and medicine, from 
the physical sciences and engineering, from business and law, could (and 
should) also be prepared. What is important is less the subject matter 
of the applications than the spur to teachers and· students to spend more 
time in their probability courses (and in other mathematics courses, too) 
discussing applications. Developing in their students the art of modeling, 
that is, of constructing a useful mathematical model of some real-world 
phenomenon, should be a higher priority than it now is for departments of 
mathematics. Although a very difficult task for teachers, we must not shy 
away on that account. Of course, reading about applications and modeling 
is quite different from the activity of mathematical modeling itself. Bringing 
illustrative examples of the sort presented in this volume into the classroom 
is one way of easing into the more challenging task. 

Applications in demography, linguistics, management science, political 
science, psychology, and sociology are included in our seven chapters. Al­
though the boundary lines between different social sciences are fuzzy and 
economists are likely to be interested in many of these applications, no unit 
on economics itself is included. There is already a vast literature on math­
ematical economics, and probabilistic models still appear to be less impor­
tant than deterministic optimization techniques in economic theory. ** 

*The Role of Applications in the Undergraduate Mathematics Curriculum, 
National Research Council, Washington, D.C., 1979; Recommendations for a 
General Mathematical Science Program, Committee on the Undergraduate Pro­
gram in Mathematics, The Mathematical Association of America, Washington, 
D.C., 1981. 

**There is however a considerable literature on probabilistic economics, since 
uncertainty plays a crucial role in economic behavior. See, for example, Lippman, 
S. A. and J. J. McCall, "The Economics of Uncertainty: Selected Topics and 
Probabilistic Methods," pp.211-284 in Arrow, K. J. and M. D. Intriligator (Eds.), 
Handbook of Mathematical Economics, vol. 1, Amsterdam: North Holland, 1981. 
These authors' bibliography will lead the interested reader to many other books 
and journal articles on probability models in economics. 
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PREFACE Vll 

As the accompanying bibliographies indicate, particular topics reviewed 
here are of relatively current interest. Of the 208 citations to articles and 
books, 10% are dated prior to 1960, 34% in the 1960s, 46% in the 1970s, 
and 10% in the 1980s. Nevertheless, no claim is being made that important 
contributions to social science are represented here. I am not qualified to 
make that judgment, which should be left to social scientists themselves. 
I can attest to two important facts which led to the selection of these 
particular topics: 1) they illustrate probability theory as it is actually used 
by social scientists, and 2) they supply a context for discussing applications 
of probability theory that interest and intrigue many students. As any 
teacher of mathematics knows very well, getting the attention and interest 
of one's students is more than half the battle. 

This book can be used in a number of different ways. As a supplement 
to a standard post-calculus probability course, it would allow students to 
see how the ideas and techniques they are learning are used in the social 
sciences. It was with this use in mind that the book was kept short 
and therefore relatively inexpensive. Exercises appear at the end of each 
chapter, along with bibliographic notes to guide further reading in the social 
science and mathematics literatures. Each chapter stands on its own and 
can be read without regard to the others. The little overlap this produces 
seems to me to be a price worth paying for the added flexibility obtained 
in making course assignments. 

In almost every unit, students will see more than just familiar material 
from a probability course. Their experience with differential and integral 
calculus, power series expansions, matrix algebra, and differential equations 
will be broadened and made more meaningful. In Chapter 3, the elements of 
dynamic programming and the discounting of cash flows are introduced. In 
Chapters 2 and 5, there is an introduction to stochastic processes, with ex­
positions of birth-death and Yule processes. Important connections between 
deterministic and stochastic models are pointed out. Chapter 5 also con­
tains an explanation of the important statistical idea of maximum likelihood 
estimation. The elements of the theory of finite Markov chains are intro­
duced (without proofs) in Chapter 6. In short, there is much of value here 
beyond merely a review of material from a first course in probability. 

A separate note on prerequisites is included to indicate what parts of 
a probability course are required to read each chapter in this book. As 
is noted there, two chapters and half of a third depend only on discrete 
probabilities and do not require a calculus background. 
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Teachers planning a course on applications of mathematics or seeking 
resource or reference material for seminars and independent reading courses 
on applications or modeling may also find the book of some interest. I would 
be disappointed if social scientists did not also find material here of value 
to themselves and their students. 

Comments from readers are always welcome. 

Brookline, Massachusetts 
March 23, 1982 

Samuel Goldberg 
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Note to the Reader about Prerequisites 
It is assumed that readers will be familiar with the techniques of differential 
and integral calculus for functions of one variable, including infinite series 
and Maclaurin power series expansions. Chapter 6 requires an acquaintance 
with matrix algebra. However, Chapters 1 and 4 and the first half of 
Chapter 3 depend only on discrete probability and can be read without a 
calculus background. 

The chart below indicates which topics in a standard probability course 
are prerequisite for chapters in this book. The location of a chapter number 
corresponds to the point in the syllabus when an adequate background 
for understanding the content of that chapter would normally have been 
acquired. 

ProbabilityTopic8 

Basic rules of probability; finite sample spaces; 
counting techniques (permutations, combina­
tions, binomial coefficients). 

Conditional probability; independent events; mul­
tiplication rule for probability of joint occur­
rence of events. 

Discrete random variables; probability mass func­
tion; distribution function; Bernoulli trials 
and binomial distribution; mean and variance; 
geometric, Poisson distributions; E(X + Y) = 
E(X)+E(Y). 

Continuous random variables; probability density 
function; distribution function; uniform, ex­
ponential, normal, and gamma distributions; 
mean and variance; independent random vari­
ables. 

Further topics: moment generating functions; sums 
of random variables; convolution integral. 

Chapter 

1 

3 (Problem 1) 

2*,4,5* 

3 (Problem 2), 6** 

7 

*These chapters contain detailed expositions of birth-death (Chapter 2) and Yule 
pure death (Chapter 5) stochastic processes. No prior knowledge of stochastic 
processes is assumed. 
**Some basic definitions and results for finite Markov chains, needed in this 
chapter, are presented without proofs. 
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Chapter 1 
A Power Index for Individuals and Coalitions 

1. Introduction 

"Power is a major explanatory concept in the study of social choice. It is 
used in studies of relations among nations, of community decision making, 
of business behavior, and of small-group discussion. Partly because it 
conveys simultaneously overtones of the cynicism of Realpolitik, the glories 
of classical mechanics, the realism of elite sociology, and the comforts of 
anthropocentric theology, power provides a prime focus for disputation 
and exhortation in several social sciences." (March [26, p.39J.) A general 
exposition of the notion of power and of attempts to study and explain 
politics by analyzing power relationships is given by Dahl [11J. 

Our aim in this unit is much more modest. It is to define and discuss 
some applications of the so-called Shapley-Shubik power index, a numeri­
cal measure of the power of individuals and of coalitions of individuals in 
decision-making voting bodies. This measure of power originates in con­
cepts of game theory. Although a development of these general concepts 
would take us too far afield, we are able to illustrate the basic ideas by 
reference to a special three-person game. This will lead to the definition of 
the power index of a member or group of members of a voting body. Some 
illustrative examples will show how the index is computed using the familiar 
counting techniques involving permutations and combinations. References 
to further applications as well as to discussions of other indices of power, 
especially the Banzhaf index, conclude the unit. 

2. Coalitions and Characteristic Function of a Game 

The game we shall consider is a slight modification of the "Left-Right" 
game in Rapoport [35J. There are three players. Player 1 moves first and 
says ''Yes'' (Y) or "No" (N). Player 2, having heard player 1 's choice, 
also chooses Y or N. Finally, player 3, knowing both prior choices, makes 
his own choice of Y or N. Figure 1 indicates the eight possible sequences 
of choices and the corresponding payoffs accruing to player 1, 2, and 3 
respectively. Thus, if each player chooses Y then player 1 receives 1 unit 
and each of the other players receives 4 units. But if player 1 's choice of Y 
is followed by a Y and then an N, the payoff to player 1 is 4 units, player 2 
gives up 1 unit (since the payoff is negative), and player 3 receives 6 units. 

1 



2 CHAPTER 1 

YYY (1,4,4\ 

YYN (4, -1,6) 

YNY (4,6, -1) 

YNN (13, -2, -2) 

NYY (2,1,6) 

NYN (-1,5,5) 

NNY (15, -3, -3) 

NNN (2,6,1) 

Figure 1. Yes-No Game. Each player chooses Y or N, starting with player 1. 
Player 2 knows player l's choice; player 3 knows choices of both players 1 and 2. 
Payoffs to players are given in parentheses next to each possible sequence of 
choices. 

Note that the sum of the three payoffs is 9 for every sequence of choices. 
The game is therefore called constant-sum. (No particular significance 
attaches to the value of the constant, We could, for example, make this 
game zero-sum by subtracting three from each payoff.) 

Let us review player 1's thoughts as he contemplates his choice. Each 
player is assumed to play selfishly so as to get the largest possible payoff 
for himself. If player 1 chooses Y, player 2 must follow with Y or N. If 
the former, then player 3 will follow with N and player 2 will end up with 
-1 unit. If, on the other hand, player 2 follows with N, then player 3 will 
choose Y and player 2 ends up with 6 units. Clearly, player 2's self-interest 
leads him to choose N if player 1 chooses Y, resulting in the sequence Y NY 
and a payoff to player 1 of 4 units. If player 1 chooses N a similar analysis 
shows that player 2 will follow with N and player 3 with N, thus getting 
player 1 a payoff of 2 units. As between Y and N, therefore, player 1 
chooses Y since it gives him a larger payoff. And we have seen that the 
outcome of the game is then the sequence Y NY. 

Now suppose we allow players to act together in order to obtain the 
largest joint payoff they can. If player 1 chooses Y, players 2 and 3 can, 
by agreeing to cooperate, bring the game to the outcome YYY which gives 
them a joint payoff of 8 units and gives a 1 unit payoff to player 1. But if 
player 1 chooses N, then players 2 and 3, by cooperating, will produce the 
outcome NY N which gives them a joint payoff of 10 units and gives a -1 
unit payoff to player 1. Player 1, in the face of this organized opposition, 
will therefore choose Y and receive 1 unit, leading as we have seen to a 
joint payoff of 8 units to the cooperating pair of players 2 and 3. We say 
that the value of the game to the coalition {2,3} is 8 and the value to the 
coalition {I} made up of player 1 himself is 1 unit. In symbols 

v{{I}) = 1, v{ {2, 3}) = 8. (I) 

Now consider what player 2's best choice is when he faces the coalition 
{1,3}. If player 1 chooses Y, player 2 will also choose Y {and lose 1 unit 
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since player 3 will choose N) rather than choose N (and lose 2 units since 
player 3 will again choose N). Thus if player 1 chooses Y, player 2 will 
follow with Y and player 3 with N giving the coalition {1,3} the joint 
payoff of lO units. On the other hand, if player 1 starts with N, player 2 
will be better off choosing Y (gaining 1 unit when player 3 follows with Y 
rather than losing 3 units by choosing N which player 3 follows with Y). 
In this case the coalition {1,3} will get only 8 units. Hence the coalition 
begins the game with the agreement that player 1 will choose Y. The values 
are thus found to be 

v({2}) = -1, v({1,3})=lO. (2) 

Similar reasoning shows that if players 1 and 2 form a coalition, then their 
best choices are Y and N (since then their joint payoff is at least lO) and 
player 3 follows with Y and loses 1 unit. Hence 

v({3}) = -1, v({1,2})=lO. (3) 

If all three players get together, this so-called grand coalition of all players 
surely is guaranteed a joint payoff of 9 units since the sum of the payoffs is 
9 for all possible choices of the players. Since this grand coalition opposes 
the null coalition (denoted by 0) it is reasonable to define the value of the 
game as zero for this coalition containing no players: 

v(0) = 0, v({1,2,3}) = 9. (4) 

The collection of eight values given in (1)-(4), one value for each of the 
eight (= 23 ) possible subsets of the three players, defines the so-called 
characteristic function of this Yes-No game. In general, for an n-person 
constant-sum (= k) game the characteristic function is a function whose 
domain is the set of all subsets (coalitions) of the universal set (grand 
coalition) 

In = {l, 2, ... , n}, 

and which assigns a real-number value veAl to each of these 2n subsets. 
These values satisfy the following conditions*: 

(i) v(0) = 0 

(ii) veIn) = k 

(iii) veAl = k - veAl 

(iv) v(A U B) 2:: v(A) + v(B), 

(5) 

if AnB = 0. 

*We use the usual symbolism of set theory. A denotes the complement of A with 
respect to the universal set In, Au B is the union and An B the intersection 
of the two coalitions A and B. The condition An B = 0 simply means that no 
player belongs to both A and B. 
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Using the values (1)-(4) it is easy to verify that these conditions are satisfied 
for the Yes-No game summarized in Figure 1. In general, the value v(A) 
is the value of the two-person game in which the coalition A plays as a 
single player with the complementary counter coalition A as the opposing 
player. For further details, consult Luce and Raiffa [23] or Owen [31]. 
These conditions need not be satisfied for non-constant-sum games (see 
Exercise 1), but constant-sum games suffice for our present purpose of 
defining a power index for each player in a game and so we can assume 
henceforth that conditions (i)-(iv) are satisfied. 

3. Shapley Value to a Player 

The characteristic function of an n-person game gives a value for each coali­
tion A of In but it does not give us a breakdown that allows assigning some 
part of v(A) to each individual player making up coalition A. This task 
was solved by Shapley [43] in 1953 and we turn now to the determination 
of the so-called Shapley value for each player in the game. 

It will be helpful to illustrate the basic ideas involved by reference to 
the Yes-No game whose characteristic function we have already computed 
and which we summarize here for convenience: 

v(0) = 0 

v({1}) = 1, v({2}) = v({3}) =-1 

v({1,2}) = v({1,3}) = 10, v({2,3}) = 8 
(6) 

v({1,2,3})=9. 

Think of building up the grand coalition by a sequence of additions of one 
player at a time, starting from the empty coalition 0. There are six (= 3!) 
possible orderings to consider: 

o ~ {1} ~ {1, 2} ~ {1, 2, 3} 
o ~ {1} ~ {1, 3} ~ {1, 3, 2} 
o ~ {2} ~ {2, 1} ~ {2, 1, 3} 
o ~ {2} ~ {2, 3} ~ {2, 3, 1} 

(7) 

o ~ {3} ~ {3, 1} ~ {3, 1, 2} 
o ~ {3} ~ {3, 2} ~ {3, 2, 1} 

In any such sequence, if A is a coalition not containing player i and one 
adds i to form the larger coalition AU{i}, then the value has changed from 
v(A) to v(A U {i}). The incremental value v(A U {i}) - v(A) is credited to 
player i. As Riker and Ordeshook [39, p.158] characterize this convention: 

The last member, sequentially and chronologically, gets the incre­
ment, as might happen if each person were able to insist on receiving 
his marginal contribution to the value of the coalition. Where players 
are able to withhold membership-and hence contributions-this is 
a common rule. 
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To illustrate, consider the contributions credited to player 2 in the orderings 
listed in (7). In the first ordering, player 2, when he forms the coalition 
{1, 2}, is credited with 

v( {1, 2}) - v( {1}) = 10 - 1 = 9 units. 

In the second ordering, player 2, when he forms the coalition {1, 3, 2}, is 
credited with 

v({1,3, 2}) - v({1,3}) = 9 -10 = -1 unit. 

And in the remaining four orderings, player 2 can similarly be seen to get 
v({2}) - v(0) = -1, v({2}) - v(0) = -1, v({3, 1, 2}) - v({3, I}) = -1, and 
v( {3, 2}) - v( {3}) = 9 units, respectively. 

Assuming all six possible orderings are equally likely, the average or 
expected incremental value credited to player 2 is 

V2 = 
(9) + (-1) + (-1) + (-1) + (-1) + (9) 

6 

or 7/3 units. This is the Shapley value of the Yes-No game to player 2. In 
a similar way, one can find that the Shapley value to player 1 is Vi = 13/3 
and to player 3 is V3 = 7/3 units. Note that these Shapley values have 
sum equal to 9, the value assigned to the grand coalition {I, 2, 3} by the 
characteristic function in (6). 

From this example we make the straightforward generalization for an 
n-person game whose characteristic function is known. Consider all n! 
possible orderings of the n players. (Each ordering determines exactly one 
sequence of additions, one player at a time, starting with 0 and ending with 
the grand coalition In.) Suppose these orderings are equally likely so each 
has probability l/n!. In each ordering, if player i is the last member of 
the coalition AU {i}, where A is a coalition not containing i, then player i 
receives an amount equal to the incremental value v(A U {i}) - v(A). The 
expected (or mean) value of these amounts is the Shapley value Vi to player i 
of the game. * 

An explicit formula can be obtained for Vi. For among all n! orderings 
of the n players, we can count those with player i in the (k + 1)st position. 
This means i joins a coalition Ak made up of exactly k players. There are 
k! ways of ordering these k players (merely permuting the members of A k ) 

and after player i takes his place, the remaining (n - k - 1) players can be 
ordered in (n - k - I)! ways. Hence there are k!(n - k - 1)! permutations 
(among the total n! permutations) which have player i in the (k + 1)SL 
position, having just joined coalition A k • In each of these orders player i 

*Shapley starts with a set of axioms that the values Vi should satisfy and shows 
they determine Vi uniquely. We have simply described the end result. See Luce 
and Raiffa [23] or Owen [31] for the axiomatic development. 
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receives V(Ak U {i}) - V(Ak)' This incremental value is weighted by the 
factor 

k!{n-k-l)! 
Pn,k = 

n! 
(8) 

in computing the mean incremental value received by player i. Hence the 
Shapley value of the game to player i is given by 

Vi = L Pn,k [V(Ak U {i}) - V(Ak)] (9) 
AkC1n 

where, as indicated, the sum is taken over all coalitions of the n players. 
(If Ak includes player i then Ak U {i} = Ak and the corresponding term 
in brackets reduces to zero. Hence the sum in (9) can be taken over only 
those coalitions of the n players that do not contain player i.) 

4. Shapley-Shubik Power Index 
Finally we come to the power index which applies the Shapley value to 
legislative or decision-making games where the players can be considered 
as voters. Each player has a certain number of votes and the rules of the 
body establish what total vote count (majority, two-thirds, etc.) is required 
to pass a motion. For such a game we assume only winning coalitions 
(i.e., those having enough votes to pass a motion) have positive value, 
and that all other coalitions, whether losing or blocking, have no value. 
With appropriate normalization, we can suppose all winning coalitions have 
value 1 and all non-winning coalitions have value 0.* In this case, the 
incremental value V(Ak U {i} )-V(Ak) appearing in the sum in (9) will be 0 if 
both Ak and Ak U {i} are winning or if both are non-winning coalitions. We 
cannot have Ak winning and Ak U {i} non-winning, so the only remaining 
possibility is that Ak U {i} is winning, but Ak is non-winning. In this case 
the incremental value is 1 and so (9) reduces to 

(10) 

where the sum is now taken over all coalitions Ak such that Ak is non­
winning but Ak U {i} is winning. In any ordering of all n players in which 
player i is preceded by such a coalition Ako we say that player i is the 
pivot. That is, player i is the pivot in an ordering if the vote total of the 
coalition of those players preceding him is insufficient to pass a motion, but 
the total becomes sufficient and the motion passed as soon as player i joins 
the coalition. 

The quantity Pn,k as defined in (8) is the proportion of all n! orderings 
of the n players in which player i occupies the (k + l)st position. The sum 

*The assumption being made here is that the game is simple, which means that 
for every coalition A the value v(A) is either 0 or 1. 
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in (10) is taken over all those coalitions Ak for which this (k + l)st position 
makes player i the pivot in the ordering. Thus formula (10) can be rephrased 
as the following definition in which we adopt the customary terminology 
and call Vi the Shapley-Shubik power index (or power) of player i in the 
voting body: 

Definition. The Shapley-Shubik power index of a member of a voting 
body is the number of voting orders (permutations of all the members) in 
which that member is the pivot, divided by the total number of possible 
voting orders. 

Finally, we remark that voters may organize into coalitions. Any such 
coalition will be considered as if it were a single bloc voter having a number 
of votes equal to the total of the votes of its members. The power index of 
the coalition can then be computed by the above definition. 

This power index is identified with Shapley and Shubik due to a 1954 
joint paper [45J in which the authors defined the index and indicated how 
it could be applied to measuring the distribution of power among members 
or committees of a legislature. Since then the Shapley-Shubik power index 
has become well-known and widely applied in political science. 

5. Some Illustrative Examples 

Example 1. A three-person committee operates under majority rule and 
each person has one vote. There are 3! = 6 possible orders in which votes 
can be cast and the second voter is the pivot in each of these orders. Since 
each person is the second voter in two of the six orders, the power of each 
person is 1/3. 

It is easy to see, as in this simple illustration, that if a committee has n 
voters and the voters have equal votes and are interchangeable, so to speak, 
then the symmetry of the situation leads to each voter having power lin. 
That the sum of the powers of all voters equals 1 follows directly from the 
definition of the power index as a proportion. 

Example 2. Consider a two-house legislature in which a majority vote in 
each house is required to pass a motion. House A has 3 members al, a2, 
a3; House B has 7 members bt, b2 , ... , b7 . Each legislator has one vote. 
To compute the power index of each legislator, we first note that the two 
houses, considered as coalitions, must have the same power. Within each 
house, symmetry requires each member to have the same power. Hence, 
each member of House A has power ! X ~ = ! and each member of House B 
has power t X ~ = l4' 

It is interesting to obtain these power indices by direct counting, as 
required by the Definition. There are 1O! = 3,628,800 voting orders in all. 
Legislator b1 can be pivot only in the following orderings of members: 
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1) b1 follows 2 members of House A and 3 members of House B, 
2) b1 follows 3 members of House A and 3 members of House B. 

In situation 1), the 2 members of House A can be selected in (~) ways from 
the available 3 members; the 3 members of House B can be selected in 
(~) ways from the available 6 members other than b1 . These 5 members 
can be permuted among the five positions preceding b1 in 5! ways and 
the remaining four members can be permuted among the four positions 
following b1 in 4! ways. Hence b1 is pivot in situation 1) in 

G)G)5!4! = 172,800 

orderings of the 10 voters. Similarly, b1 is pivot in situation 2) in 

G) G) 6! 3! = 86,400 

orderings. Hence, the power of b1 is 

172,800 + 86,400 1 
3,628,800 14 

Clearly, the power index assigned to each member of House B is also 1/14 
and the entire house thus has power 1/2, in agreement with the values 
obtained by the simpler indirect argument. As Riker and Ordeshook [39, 
p.168] comment on a similar example: 

Thus the members of the smaller house have a higher index than 
the members of the larger house even though the eight [ten in our 
Example] legislators are in all other ways equal. Perhaps this is why 
Senators usually have more prestige than Representatives. 

This example illustrates the use of counting techniques (permutations 
and combinations) in computing the power index. Naturally, more realistic 
examples dealing with actual legislatures will require more complicated 
analysis and much more computation. But the principle remains the same: 
count in some systematic way the number of orderings of all voters for 
which a given member is pivotal. 

Example 3. Suppose a nine-member decision-making body uses majority 
rule and each member has one vote. Each member clearly has power 1/9. 
But suppose three members form a coalition. What is the power of this 
three-member coalition assuming no counter-organization, i.e., assuming 
the six other members vote as individuals? If we use C to denote the 
coalition and x to denote an individual member, then all voting orders are 
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of the following types: 

Cxxxxxx 
xCxxxxx 
xxCxxxx 
xxxCxxx 
xxxxCxx 
xxxxxCx 
xxxxxxC 

Since there are the same number (6! = 720) of voting orders in each of 
these types, we can compute the power of coalition C by determining the 
proportion of these seven voting orders in which C is the pivot. Remem­
bering that C has three votes, we find that C is pivot when it votes in 
the third, fourth, or fifth position. Hence the coalition C has power 3/7. 
Since the remaining power of 4/7 is divided equally among the other six 
members, each has power 2/2l. 

Note that the three members of the coalition share power 3/7 whereas 
their power as individuals totaled 3/9. The difference of 6/63 = .095 is 
termed the "organizational bonus" by Krislov [20, Table 1]. 

Krislov and also Schubert [42] have studied the distribution of voting 
power in a nine-member body because of their interest in the U.S. Supreme 
Court. Both consider the effectiveness of an organized opposition in reduc­
ing the power of protagonist coalitions. For example, we have seen that a 
three-man coalition has power 3/7 when the other six members of the body 
act as individuals. Suppose now that these six individuals organize into two 
coalitions of size 3. By symmetry, it is clear that each coalition has power 
1/3 and so the original group of three has lost power (from 3/7 to 1/3) as 
a result of this counter-organization. 

Intuitively one would expect that counter-organization would always 
lead to a diminution of power for the original group of three. But as we 
now show, this is not the case when the six other individuals organize into 
three coalitions of two members each. Denoting the original coalition by C 
and the three other coalitions by X, Y, Z, note that all voting orders are 
of the following types, determined by the position of coalition C: CXYZ, 
XCYZ, XYCZ, XYZC. (There are actually 3! = 6 voting orders of each of 
these types, obtained by permuting the order of the three coalitions X, Y, 
and Z.) Since C casts three votes and X, Y, Z two votes each, C is the 
pivot in the second and third above types. Hence the power of C is now 2/4, 
an increase from 3/7 as a result of this less-than-ideal counter-organization. 

Both Krislov and Schubert present tables showing how the power of 
protagonist coalitions of all sizes varies as the remaining members or­
ganize in various ways. Table 1 excerpts this information for some pos­
sible counter-organizations with a protagonist coalition of size 3. Schubert 
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Organization Power Indices 

of Protagonist Other 
Other Members Coalition of Size 3 Members 

1, 1, 1, 1, 1, 1 .429 .095 .095 .095 .095 .095 .095 
2, 1, 1, 1, 1 .400 .200 .100 .100 .100 .100 
2,2, 1, 1 .400 .200 .200 .100 .100 
2, 2, 2 .500 .167 .167 .167 
3, 1, 1, 1 .300 .300 .133 .133 .133 
3, 2, 1 .333 .333 .333 .000 
3, 3 .333 .333 .333 

Table 1. Voting Power of Protagonist Coalition of Size 3 in a Nine-Person 
Body as Six Remaining Members Organize in Various Ways. From Schubert [42, 
Table 1]. 

summarizes the entries in the second column as follows [42, p.474]: 

The most interesting case is the problem of organizing to compete 
against a triple. A single additional triple is maximally effective; while 
two triples, or a triple and a pair, provide less effective opposition than 
the single triple. Either a single pair, or two pairs, provide (equally) 
weak opposition; while three pairs is a suicidal defense which results 
in a gain in power for the protagonist triple! 

6. Applications and Other Measures of Power 

It is a mistake, of course, to think that the complex and multifaceted 
concept of power as it is variously used by political scientists and others 
will be captured with all its nuances by such a simplified measure of power 
as the Shapley-Shubik index. Nevertheless, the index has been very widely 
applied. General discussions can be found in the books by Brams [6], Riker 
and Ordeshook [39], and Straffin [48], as well as in Lucas [22]. David, 
Goldman, and Bain [12] study U. S. party conventions, Mann and Shapley 
[25] and Merrill [27] the Electoral College, MacRae and Price [24] the 
Senate, and Riker and Niemi [38] the House of Representatives. 

Applications to foreign voting bodies are made by Miller [29] and 
Straffin [46] (Canada); Owen [32] (Israel); and Riker [36] (France). The 
United Nations Security Council is considered by Junn [19] and Monjardet 
[30], as well as by Riker and Ordeshook [39]. 

In the 1960s the U. S. Supreme Court decided a number of cases that 
led to a reexamination of many of the then current voting arrangements. 
Banzhaf [1], Krislov [21], and Riker and Shapley [40] all discuss the relation 
between voting power and various weighted voting arrangements in light 
of the 1963 decision in Grey v. Sanders that "the conception of political 
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equality ... can mean only one thing-one person, one vote" and the 
decision the following year in Reynolds v. Sims holding that both houses 
of a bicameral state legislature must be apportioned substantially on a 
population basis. It was in this connection that Banzhaf in a series of 
papers [1-4) devised what has since become known as the Banzhaf power 
index. For each of the 2n possible coalitions (subsets) of n voters, he asked 
whether a change in a particular individual's vote (from yea to nay, or vice 
versa) would alter the outcome. If yes, then that individual's vote is said to 
be decisive. The (absolute) Banzhaf power index of a voter is then defined 
as the number of that voter's decisive votes divided by 2n. The greater the 
number of coalitions in which a voter can affect the outcome, the greater 
his Banzhaf power index. The relative Banzhaf power index is obtained by 
normalizing so the sum of the indices, taken over all voters, is 1. 

The Banzhaf and Shapley-Shubik indices are compared in Brams [6), 
Dubey and Shapley [13), Owen [31,33), Shapley [44), and Straffin [46). Fas­
cinating discussions of Justice Harlan's negative comments on the Banzhaf 
index in his dissenting opinion in Whitcomb v. Chavis, a case decided 
by the Supreme Court in 1970, can be found in Grofman [15) and Mer­
rill [28). The Banzhaf index was favored in Ianucci v. Board of Supervisors 
of Washington County, decided in 1967 by the New York State Court of 
Appeals. Imrie [17), Johnson [18), and Lucas [22) discuss the large impact 
this decision has had on the apportionment of votes in county legislatures. 

For modifications of the Banzhaf index, see Merrill [27) and Straffin [46). 
A general discussion of some other measures of power is found in Riker [37). 
Different measures introduced by Coleman [7,8], Dahl [10], and Rae [34] are 
related to the Banzhaf index hy Dubey and Shapley [13]. These authors 
also point out the relationship between the Banzhaf indices and certain 
numerical parameters arising in the study of threshold. logic and switching 
functions in electrical engineering. Finally, it is worth doting the use of the 
Shapley-Shubik power index by Haefele [16] in environmental studies. 

Another approach to the problem of power focuses on the question of 
who a lobbyist should select to approach in a decision-making body in order 
to promote a favored proposal. Young [51] uses a "best" lobbying strategy 
to define power. Ben-Dov and Shilony [5] study the related notion of a 
member's importance, the sensitivity to this member's vote of the proposal's 
probability of being passed, given the opinions of all the voting members 
of the body and their susceptibility to influence. "In other words, a person 
is more important the more a change of his mind matters." There are 
interesting connections between power indices (Shapley-Shubik or Banzhaf) 
and this importance measure. These authors present a simple example 
of a three-person decision-making body in which Mr. 1 has greatest a 
priori power, Mr. 2 is most important, and Mr. 3, because he is able to 
be influenced more easily (at lower cost), becomes most important when 
lobbying is added to the system. 
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Exercises 

1. Compute the characteristic function for the game with the same rules 
as the Yes-No game of Figure 1 but with payoffs to the three players 
changed as follows: 

YYY gets payoff (1, 1, 1) 
YY N gets payoff (0,0,3) 
Y NY gets payoff (0,3,0) 
Y N N gets payoff (-2,2,2) 
NYY gets payoff (3,0,0) 
NY N gets payoff (2, -2,2) 
N NY gets payoff (2, 2, -2) 
NN N gets payoff (-1, -1, -1). 

Show that conditions (iii) and (iv) listed in (5) are violated for this game, 
which is not constant-sum. (See Rapoport [35, p.79J where this game, 
described as a three-person Prisoners' Dilemma game, is analyzed.) 

2. A four-person committee requires five votes to pass a measure. Mem­
bers A and B each cast one vote, C casts two, and D casts three votes. 
Calculate the Shapley-Shubik power index of each member and show 
that although the votes are in the ratio 1:1:2:3, the power indices are 
in the ratio 1:1:3:7. (Thus three votes are "worth" seven times a single 
vote and more than twice as much as two votes in this committee.) 

3. To pass a motion, a bicameral legislature requires a majority vote in 
each house. House A has three and House B five members. Each 
legislator casts one vote. 

(a) Using symmetry considerations and the fact that the two houses 
have equal power, show that the Shapley-Shubik power index of 
each member of A is 1/6 and of each member of B is 1/10. ' 

(b) Verify the values obtained in part (a) by direct counting of voting 
orders, as required by the definition of the Shapley-Shubik power 
index. 

4. Verify power indices for the protagonist coalition and for the other 
members, as entered in Table 1. 

5. Krislov [20, pA63J makes the following claims in his study of power in 
a nine-person body. 

(i) "The 'swing man situation' so often discussed with regard to the 
Supreme Court offers the maximum payoff of .333 for an individual. 
That is to say, where two coalitions of four and four exist the ninth 
man may enter into decisions as effectively as either bloc." 
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(ii) "An example of intricacies of counter-organization is to be found 
in the 4,3,1,1 situation. Here counter-organization reduces the 
four-man power to .500 from .667. The three-man and the one­
man coalitions equally share .167 of the power. Thus the three 
men actually slightly lower their payoff (formerly .200) by joining 
together, though they do succeed in transferring greater power 
from the dominant coalition to the independents." 

Verify these claims. 

6. To pass a bill, it must be voted for by the President and by a majority of 
each of two chambers, a three-person Senate and a five-person House. * 
Show that the Shapley-Shubik power index of the President is 32/84, 
of each Senator is 9/84, and of each House member is 5/84. 

7. Consider a voting body of size n with each member casting one vote 
and w votes required to win. Suppose w ~ (n + 1)/2. Show that the 
Shapley-Shubik power index of a coalition of x of these members is 
given by x/(n - x + 1) if x :::; n - w + 1, by (n - w + 1)/(n - x + 1) if 
n - w + 1 < x < w, and by 1 if w :::; x. 

8. A voting body of size 7 uses majority rule, as does one of its committees 
of size 3. To pass a proposal, both the committee and the entire 
body must vote approval. Calculate the Shapley-Shubik power index 
of each member of this body and show that the ratio of the power of a 
committee member to that of a non-committee member is 10:3. (This 
example is generalized in the next exercise.) 

9. A faculty of size 2n + 1 uses majority rule, as does one of its com­
mittees of size 2m + 1. To pass a proposal requires approval of both 
the committee and the entire faculty. (Assume n > 2m so a majority 
in the faculty is not automatic even if the committee supports an issue 
unanimously.) Verify the following assertions leading to a determina­
tion of the relative power of a committee member as compared to a 
non-committee member of the faculty. 

(a) Each voting order of the 2n + 1 faculty members is one of (;;;;tD 
different types, distinguished by the location in the ordering of the 
2m + 1 committee members. 

(b) A non-committee member is pivot in one of these ordering types if 
and only if he is preceded by exactly n faculty colleagues of whom 
at least m + 1 are committee members. Hence, a non-committee 
member is pivot in a total of T orderings, where 

*This example is worked out in Shapley and Shubik [45, p.792j. The Banzhaf 
theory is applied to this same example in Dubey and Shapley [13, p.103]. 
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(c) Using the identity 

with k = 2m + 1 and breaking the sum into two parts (the first 
from j = 0 to j = m, the second from j = m + 1 to j = 2m + 1), 
note that the resulting sums are each equal to T. Hence 

T ~! ( 2n ) 
~ 2 2m+ 1 . 

(d) The Shapley-Shubik power index of the non-committee members 
as a whole is (n - m)/(2n + 1) and therefore the power index of 
the committee is (n + m + 1)/(2n + 1). 

(e) Let r denote the ratio of the size of the entire faculty to that of the 
committee. Then the ratio of the power of a committee member 
to that of a non-committee faculty colleague is (1 + r):l. 

10. (a) Each member of a five-person voting body has one vote and 
majority rule applies. A lobbyist makes judgments about the 
"correctness" of each voter's position on a bill, a correct position 
being one that agrees with the lobbyist's. Suppose the voters act 
independently and each is correct with probability 0.6. What is 
the probability that the majority position of the entire voting body 
is correct? 

(b) Suppose voters are no longer "equal" but that a weighted voting 
scheme exists in the body. For example, let votes be distributed as 
follows: (i) A and B each have 3 votes; C, D, E each have 1 vote; 
or (ii) A has five votes; B, C, D, E each have 1 vote. Note that a 
majority now requires at least 5 votes in (i) and (ii). Assuming the 
voters are still acting independently and that each casts a correct 
vote with probability 0.6, as in (a), determine for (i) and (ii) the 
new probahility that the majority position of the body is correct. * 

11. By filling in the details of the steps outlined below, prove the following 
result on majority rule:** 

*This numerical example, considered by Weinstein [50], illustrates a general 
principle about majority rule. It is a corollary of a theorem due to Condorcet 
that if the probability of each voter being correct is greater than 1/2, then it is 
more likely for the majority to be correct than it is for any single voter. See the 
discussion in Grofman [14]. 
**This result was conjectured by Rae [34] on the basis of some computations in 
the special case p = 1/2. Proofs were given by Schofield [41] and Taylor [49]. 
Curtis [9] generalized by allowing voters to have different probabilities of favoring 
the proposal, minimizing the average number of voters who find themselves on 
the losing side. Majority rule is also discussed by Straffin [47]. For the relation 
of this result to the Banzhaf power index, see Dubey and Shapley [13, p.106]. 
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Theorem. Suppose an odd number, say n, of independent voters each 
has probability p (p ~ 0, 1) of favoring a proposal and q = 1 - P of 
voting against it. The proposal carries if and only if it receives at least 
k votes (1 ::; k ::; n). Then the choice k = (n + 1)/2, defining majority 
rule, minimizes each particular voter's chance of being on the losing 
side of the vote. 

Step 1. A given voter is on the losing side in one of two ways: 
(1) He votes "yes" and is joined by no more than k - 2 colleagues; 
(2) He votes "no" and at least k of his colleagues vote "yes." 

Thus the probability of the voter being on the losing side is 

n-1· . n-1·· k~2 () n ( ) 2a i pt+lqn~l~t + i~ i ptqn~t = R(k), say. 

Step 2. To find the value of k that minimizes R(k), first define 
!1R(k) = R(k + 1) - R(k) and show that 

k n~k (n-1)! 
!1R(k)=p q k!(n_k)!(2k-n). 

Step 3. Note that !1R(k) < 0 if k ::; (n - 1)/2 and !1R(k) > 0 if 
k ~ (n + 1)/2, and thus complete the proof. 
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Chapter 2 
How Many People Have Ever Lived? 

1. Introduction 

Can the total number of people who have ever lived on the Earth be 
estimated in some reasonable way? This fascinating question has been 
the subject of a number of papers, the first by Winkler [15], others by 
Deevey [3], Desmond et al [4], Keyfitz [7], and the most recent by Westing 
[13]. Curiously enough, the two-page article by Keyfitz and the estimate 
obtained therein found their way into the Information Please Almanac [6] 
under the title "How Many Earth People Have There Been?" 

These authors all assumed exponential growth during each of the time 
intervals between certain key dates at which times the total world popula­
tion was taken to be known. We first show how deterministic exponential 
growth can be understood as the average behavior of a population whose 
size varies stochastically, growing over time due to the random occurrence 
of births and deaths. We then use the exponential growth model with some 
currently available data in order to answer the question posed in our title. 
Finally, we discuss the sensitivity of our estimate to various assumptions 
made along the way and compare our estimate with those obtained by 
others. 

2. A Birth-Death Stochastic Process· 

Let the number of persons alive at time t be a non-negative integer-valued 
random variable denoted by N(t} and suppose 

Pk(t) = P(N(t) = k) k=0,1,2, .... (1) 

For each t ~ 0, these probabilities are non-negative and sum to 1, i.e., 

00 

L Pk(t) = 1. (2) 
k=O 

The assumption that the population size is initially fixed at i persons is 
expressed by the equations 

(3) 

*Those who prefer on first reading to concentrate on the application to estimating 
world population can skip to Section 4. 
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We shall describe the so-called birth-death stochastic process, derive a sys­
tem of differential-difference equations from which the probability distribu­
tion Pk(t) can be calculated, and then show that the mean of this distribu­
tion can be determined without first calculating the distribution itself. This 
mean will turn out to be the familiar exponential function of elementary 
calculus describing exponential growth (if births overcome deaths) or ex­
ponential decay (if deaths overcome births). 

We make two assumptions about the occurrence of births and deaths 
in a very small time interval of duration /}.t (which will shortly be made to 
approach zero): 

1. Each individual has probability )../}.t to give birth (to a single 
offspring) and probability J.l/}.t to die in the elapsed time /}.t. Here 
).. and J.l are positive constants which measure the intensity of births 
and deaths, respectively. The larger).. (or J.l), the more probable 
that a birth (or a death) occurs in the given time interval. 

2. Births and deaths occur independently. 

We note in passing that these assumptions ignore age and sex differ­
ences as well as multiple births, thus drastically oversimplifying the actual 
process of human population growth. * 

To derive the fundamental equations from which the probabilities Pk(t) 
can be determined, we need the following preliminary result. 

Lemma. Let the size of the population be k at time t. In a small interval 
from t to t + /}.t, the population can undergo transitions as follows: 

F k t k - 1 persons with probability kp/}.t + o(/}.t) { 

k + 1 persons with probability k)../}.t + o(/}.t) 

rom persons, 0 k persons with probability 1 - k()" + J.l)/}.t + o(/}.t) 

k ± n (n ~ 2) persons with probability o(/}.t). 

Here o(/}.t) denotes any function of /}.t that is of smaller order of magnitude 
than /}.t. More precisely, a function f(/}.t) is said to be o(/}.t), read "little-oh 
of /}.t" if 

as /}.t ........ o. 

Proof. If there are k persons alive at time t and each has probability )../}.t 

to give birth and J.l/}.t to die in an elapsed time /}.t, then there will be 
k + 1 persons at time t + /}.t provided either (i) exactly one of the k persons 
give birth and none of the k persons dies in the interval or (ii) exactly n 
(2 :::; n :::; k) of the k persons give birth and n - 1 of the k persons die in 

*One needs to start somewhere and it is a reasonable strategy to start with a very 
simple model. Although more complex and realistic assumptions can be made, 
this simple birth-death stochastic model turns out to have many applications and 
will suffice for our limited purpose in this unit. For more realistic models, see 
Keyfitz [8], and Pollard [11]. 
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the interval. From the fact that we have k choices for the person who gives 
birth and using the independence assumption, we see that the probability 
of alternative (i) is given by* 

(4) 

Expanding the binomials shows that this probability is equal to k'A6.t plus 
terms with at least a factor (6.t)2. These terms are each o(6.t) and since the 
sum of a finite number of functions, each o(6.t) , is again o(6.t), it follows 
that the probability of alternative (i) is k'A6.t + o(6.t). Alternative (ii) has 
probability 

Since n 2: 2, each term in this expansion has (6.t)3 as a factor and hence 
is o(6.t). Therefore alternative (ii) has probability o(6.t) and it follows 
that the transition from k to k + 1 persons in the interval (t, t + 6.t) has 
probability k'A6.t + o(6.t), as claimed. Similar arguments for the other 
possible transitions are used to complete the proof of the Lemma. 

With this Lemma in hand, we turn to the derivation of equations 
satisfied by the probabilities Pk(t). Consider the event, with probability 
Pk(t + 6.t), that k 2: 1 persons are alive at time t + 6.t. We can obtain 
another expression for this probability by breaking up the event into the 
following mutually exclusive and exhaustive subevents determined by the 
number of persons alive at time t: for n = 0, ±1, ±2, ... , there are k + n 
persons alive at time t and the transition from k + n to k persons takes 
place in the interval from t to t + 6.t. From the Lemma, the transition from 
k to k persons has probability 1 - k('A + JL)6.t + o(6.t); the transition from 
k - 1 to k persons has probability (k - 1)'A6.t + o(6.t); the transition from 
k + 1 to k persons has probability (k + l)JL6.t + o(6.t); the transition from a. 
population of any other starting size has probability o(6.t). Hence, we see 
that 

Pk(t + 6.t) = Pk(t)(l - k('A+JL)6.t + o(6.t)) + Pk- 1(t)((k -l)'A6.t + o(6.t)) 

+ Pk+l(t)((k + l)JL6.t + o(6.t)) + o(6.t), 

the final o(6.t) being the aggregate contribution from populations with k±2, 
k ± 3, ... persons at time t. (Note that we have used the fact that the 

*Readers familiar with the binomial distribution will recognize (4) as the product 
of two binomial probabilities. The first is the probability of obtaining exactly one 
"success" (a birth) and therefore k - 1 "failures" (no births) in k Bernoulli trials 
with probability >.6t of a success in each trial. The second is the probability of 
obtaining zero "successes" (deaths) and therefore k "failures" (no deaths) on k 
Bernoulli trials with probability J.L6t of a success in each trial. A similar explana­
tion can be made for the more general formula (5) which is the product of the 
binomial probabilities (!)(>'6t)n(1- >.6t)k-n and (n~1)(J.L6tt-l(1- J.L6t)k- n+I. 
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product of any factor not dependent on ~t and a function that is o(~t) 
is again o(~t).) Recalling that the sum of o(~t) terms is again o(~t), we 
obtain 

Pk(t + ~t) = Pk(t) - k(A + Jl-)Pk(t)~t + (k - l)APk_l(t)~t 

+ (k + 1)J.LPk+1(t)~t + o(~t). 
Transposing Pk(t) to the left-hand side and dividing both sides of the 
resulting equation by ~t yields 

Since °<ttt) --+ 0 as ~t --+ 0, the right-hand side has a limit as ~t --+ o. Hence 
so does the difference quotient on the left-hand side. But we recognize this 
limit as the derivative dP~t(t). Hence we have shown that for k 2: 1, 

If k = 0, a review of the just completed argument shows we need only 
exclude the impossible alternative that we start with -1 persons alive at 
time t. Otherwise the derivation proceeds unchanged and we obtain the 
equation 

(7) 

The system of infinitely many differential-difference equations given by 
(6) and (7), together with the (infinitely many) initial conditions given 
by (3), can be solved* to determine the probability distribution Pk(t) of 
the discrete random variable N(t), the size of the population at time t. But 
we proceed instead to calculate the mean of this distribution directly from 
the differential-difference equations, without first solving them. 

3. Determination of the Mean Population Size 

Let 
00 

ml(t) = E[N(t)] = L: kPk(t) 
k=O 

and 
00 

m2(t) = E[N2(t)] = L: k2 Pk(t) 
k=O 

*See Chiang [2, p.272 fl.) 



HOW MANY PEOPLE HAVE EVER LIVED? 23 

be the first moment (the mean) and the second moment, respectively, of 
the population size at time t. (Since the summands are zero for k = 0, 
note that we could equally well sum from k = 1. This fact is used below.) 
Now differentiating mi(t) and then substituting from (6), we have 

~mdt) = f: k dPk(t) 
dt k=i dt 

00 

k=i 
00 

= -(A + J.l) 2: k2 Pk(t) 
k=i 

00 00 

+ A 2: k(k - 1)Pk- i (t) + J.l 2: k(k + 1)Pk+i(t). 
k=i k=i 

To simplify the second and third sums on the right it is helpful to use the 
identities 

k(k - 1) = (k - 1)2 + (k - 1), k(k + 1) = (k + 1)2 - (k + 1). 

In the third sum let us also start from k = 0, which does not affect the sum 
but makes k + 1 vary from 1 to 00. It is then easy to see that the equation 
for the derivative of mi(t) becomes 

d 
dt mi(t) = -(A + J.l)m2(t) + A[m2(t) + mi(t)] + J.l[m2(t) - mi(t)]. 

Since the second moment terms all cancel, we are left with 

(8) 

the familiar differential equation for exponential growth (if A > J.l) or 
exponential decay (if A < J.l). 

Letting A - J.l = r be the net growth factor, the general solution of this 
differential equation is 

(9) 

where c is an arbitrary constant. Using the initial conditions (3), we see 
that mi(O) = i so that c = i, the initial population size, but we shall not 
need this fact. In the next section we simply assume exponential growth, 
although we now realize that this pattern of growth can be interpreted in 
two different ways: 

(i) the population grows deterministically and its actual size at any time t 
follows the exponential path given by (9); 

(ii) the population grows stochastically according to a birth-death prob­
abilistic process, its size at any time t is therefore a random variable, 
but its mean or average size at time t grows exponentially as given 
by (9). 
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It may be helpful to think of these interpretations in the following way. 
Let us observe a large number of different populations, each undergoing 
exponential growth with the same values of the parameters c and T. In the 
deterministic model, at each moment of time, all the populations would 
have the same size, as given by (9). But in the stochastic model we would 
expect to see variation from one population to the next, with different 
populations having different sizes at any given moment. However, the 
average size of these populations at any time t would be approximately 
given by equation (9), the approximation tending to improve the larger the 
number of populations whose sizes are averaged. 

4. Fitting an Exponential Curve 

Let us now simplify matters and write n(t) for the number of persons Hving 
at time t. Suppose we know (or guess) this number at two different dates, 
say tl and t2. Say n(td = nl and n(t2) = n2, identifying the two points 
A and B in Figure 1. 

B 

t (Time in years) 

Figure 1. Exponential curve passing through two points. 

The key assumption that population size has grown exponentially during 
the time from It to t2 means that positive constants c and T exist so that 
for tl ::; t ::; t2, 

n(t) = ceTt • (10) 

This is, of course, the equation derived and interpreted in the preceding 
section. Although we now adopt the simpler language of the deterministic 
interpretation, a reader can choose to think of n(t) as the mean number of 
persons living at time t for a population growing stochastically according to 
a birth-death probability process. Since we want the particular exponential 
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curve passing through points A and B, the constants c and r in (10) are 
determined by the two conditions 

from which 

Dividing yields 

and taking logarithms, 

and 

and 

n2 = er (t 2 -t,j 

nl 

With this value of r in the first of the equations (11) we have 

and so, from (10) 

(11) 

(12) 

(13) 

(14) 

With r specified by (13), this is the unique exponential curve passing 
through the points A and B in Figure 1. 

The total person-years lived from time tl to time t2 is given by the area 
under the exponential curve above the interval (tl h), i.e., by the integral 

substituting from (12) and (13). Simplifying yields the final formula 

.. (n2 - nt}(t2 - tt) 
Person-years hved 10 (tt. t2) = I ( ) I ( ) . (15) 

n n2 - n nl 

Of course, this assumes nl ~ n2 (see Exercise 4). The approximate number 
of persons who lived in (tl,t2) is then obtained by dividing the person-years 
lived by the average life expectancy for that time period. 
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5. Population Data and Results 

Formula (15) is used for each of a number of time intervals into which we 
divide the time span from the first human presence to today. The estimate 
we end up with will depend on our choice of this first date and on the 
way this time span is subdivided into smaller intervals in each of whieh the 
method requires the fitting of an exponential growth curve. Let us begin 
with an extremely coarse estimate obtained by using a single time interval 
starting with 1,500,000 years before the Christian Era and ending with the 
year 1980. For t1 = -1,500,000 years we take n1 = 2 persons and for 
t2 = 1980 years we take n2 = 4,400,000,000.* Applying Formula (15), 
we obtain 307 X 1012 person-years and after dividing by 25 (whieh we 
take as an average life expectancy), an estimated 12 trillion people. (Such 
computations and those required below are done in a few minutes using a 
computer or a scientific hand-held calculator.) 

It is more reasonable to divide this single large time span into a num­
ber of smaller subintervals by using times for which estimates of world 
population have been made. ** In Keyfitz and Flieger [9, p.viii] we find the 
following: 

It took ... up to 8000 B.C. to attain a population of five millions in 
the world. 
. .. about the reign of Julius Caesar 300 million people, to within a 
hundred million either way, were dispersed over the planet. A similar 
pace of growth . .. continued through the Middle Ages and after, so 
that by 1750 A.D. the total was about 800 millions. 
But now an acceleration started. The first billion was reached about 
1825; the second billion about 1925; the third billion about 1960. 

These data, together with our assumed starting population and time 
and the United Nations estimate of 1980 world population, are summarized 
in Table 1 on the next page. 

In the last column of Table 1 we have the results of using Formula (15) 
for each of the seven time intervals. The total person-years adds to 2.367 X 
1012 . Dividing by an assumed average expectation of life of 25 years, we 
obtain an estimate of 94.7 X 109 or about 95 billion for the number of 

*Keyfitz [7] starts with Adam and Eve at t = -1,000,000 years and ends with 
3 billion persons in 1960. Westing's [13] starting date of 298,000 B.C. is based 
on estimates of when Homo sapiens first appeared on Earth. The dividing line 
between man and ape is still a matter of anthropological controversy, but Homo 
habilis, dated about 1,500,000 years ago, may as well be our starting point in this 
very rough approximation. The world population figure used for 1980 is g:iven by 
the United Nations [12, Table 1]. Our estimate of 12 trillion is reduced by about a 
factor of five if the single time interval is taken to start with Westing's 298,000 B.C. 
Either way, the estimate obtained in this simple-minded fashion is ridieulously 
high. 
**These estimates, even for recent years, can only be rough approximations. As 
one goes back in time, a growing margin for error must be allowed. The reliability 
of historical population estimates and assumptions on which they are based are 
surveyed by Durand [5] and Biraben [1]. 
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Year of Christian Era World Population Inn 
(n2 - nt}(h - tt} 

t n In(n2) -In(nt} 

-1,500,000 2 0.693 
.506 X 1012 

-8,000 5,000,000 15.425 
.573 X 1012 

-50 300,000,000 19.519 
.918 X 1012 

1750 800,000,000 20.500 
.067 X 1012 

1825 1,000,000,000 20.723 
.144 X 1012 

1925 2,000,000,000 21.416 
.086 X 1012 

1960 3,000,000,000 21.822 
.073 X 1012 

1980 4,400,000,000 22.205 
2.367 X 1012 

Table 1. Calculation of total person-years based on seven time intervals. 

persons who have lived on the Earth. (It is true that we could use different 
average life expectancies for each of the subintervals of time to reflect 
changing conditions, but as we shall see the result is not very sensitive 
to these numbers and such additional precision is difficult to justify in light 
of the rough population estimates used in our calculations.) 

It is easy to see why this estimate, based on seven exponential curves, 
one fitted over each of the seven time intervals in Table 1, is so much lower 
than the 12 trillion people obtained on the basis of one exponential curve 
fitted to the two end points of the time span. The single exponential joins 
the two points given by t1 = -1,500,000, n1 = 2 and t2 = 1980, n2 = 
4,400,000,000. Using these values we determine r = .00001432 from (13) 
and then from (14) we can compute the height of this exponential at any 
intermediate time t. For example, we find 

n( -8000) = 3,810,000,000 

n( -50) = 4,270,000,000 

n(1750) = 4,390,000,000, etc. 

These are significantly larger than the corresponding population sizes 
entered in Table 1 and so the area under each of the seven fitted exponen­
tials is much smaller than the area above the same time interval under the 
single exponential curve. 

How does our final value of 95 billion humans who have inhabited the 
Earth at one time or another compare with estimates obtained by others? 
Westing [13J gets 50 billion using different key dates (but still numbering 
eight in all) and starting with 298,000 B.C.* He also uses an average life 
expectancy that varies from a low of 20 years to a high (during his most 

*He makes a computational error. The correct total based on his data is 46.4 
billion. See Exercise 5. 
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recent interval from 1945 to 1980) of 50 years. The estimate of Keyfitz [7], 
when his five key dates (from 1,000,000 B.C. to 1960) are augmented by 
a sixth for 1980, becomes 72 billion. He assumes a constant 25-year life 
expectancy over all periods. Desmond [4], starts with 600,000 B.C. and 
uses three intervals, obtaining an estimate of 77 billion up to the year 
1962. Using twelve time periods starting with the Lower Paleolithic of 
some one million years ago, Deevey [3, p.197] concludes that "about 110 
billion individuals seem to have passed their days, and left their bones, if 
not their marks, on this crowded planet." Finally, we have repeated our 
calculations based on 30 key dates and world population estimates* (26 of 
these, ranging from 400 B.C. to 1970, are from Biraben [1, Table 21, and 
four others, 298,000 B.C., 40,000 B.C., 8,000 B.C., and 1980, are used by 
Westing), and also assuming a fixed life expectancy of 25 years. The result, 
using this much finer subdivision of the total time from 298,000 B.C. to 
1980, was a total of 62 billion. This total rises to 72 billion if one starts 
with two people at 1,500,000 B.C. instead of at 298,000 B.C. Introducing 
the additional variation in life expectancy, as in Westing, from a low of 
20 years in the earliest period to a high of 50 years in the latest decades, 
these totals become 46 and 60 billion, respectively. 

It appears that a range from 50 to 100 billion is a reasonable estimate 
for the answer to the question posed in our title. It is interesting to note 
that the approximately 4.4 billion persons inhabiting the Earth in 1980 
make up somewhere between 4% and 9% of the number who ever lived. 
The upper value of 9% seemed startling enough to be featured in a recent 
headline in the New York Times [14]. 

Exercises 

1. Modify the birth-death process in the text by supposing J.l = 0, i.e., 
eliminate deaths. The result is the so-called Yule birth process. Let us 
assume an initial population size of 1. 

(a) Reformulate the Lemma of the text to show that in a small time 
interval from t to t + t:.t the population can undergo transitions as 
follows: 

Transition 

k-+k+1 
k-+k 

k -+ k + n (n 2:: 2) 

Probability 

k>..t:.t + o(t:.t) 

1 - k>..t:.t + o(t:.t) 

o(t:.t). 

*In this finer subdivision of time, there are time periods during which there was 
a decline of world population. The outbreak of the plague caused total world 
population to decline from 443 million in 1340 to 374 million in 1400. See the 
discussion of such phases of growth and decline in Biraben [1, pp.9-12J. 
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(b) Show that poet) = 0 for all t and 

k = 1,2, .. .. (16) 

(c) Put k = 1 in (16), solve the resulting differential equation, and 
thus show that P1(t) = e-At . 

(d) Put k = 2 in (16), use (c), and solve the resulting equation to show 
that P2 {t) = e-At(l - e-At ). 

(e) Use mathematical induction to prove that 

k = 1,2, .... 

(f) Show that E[N(t)] = eAt and Var[N(t)] = e>.t(eAt -1) for the Yule 
process. 

2. (a) Show directly from the system of differential-difference equations 
(6) that m2(t), the second moment of the random population size 
N(t), satisfies the differential equation 

where i is the initial population size at time O. 

(b) Noting that e2(I-'-A)t is an integrating factor, solve the differential 
equation to find (if A ~ J.L) 

(c) Recalling that the variance of N{t) is given by 

show that (if A ~ J.L) 

(d) Suppose A = J.L, i.e., the net growth rate r = A - J.L = O. Use 
L'Hospital's rule (or otherwise) show that Var[N(t)] = 2iAt. 
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3. Consult Chiang [2], Pielou [lOJ or some other book on stochastic 
processes to learn how to obtain the explicit solution of the system of 
differential-difference equations (6) that govern the birth-death process. 
Also, look into the determination of the probability of the ultimate 
extinction of the population, i.e., limt __ oo poet). The result, assuming 
initial population size i, is as follows: 

if A S; II 
if A > II. 

In words: if A S; II, then extinction is certain; if A > II, then extinc­
tion occurs with probability only (II /A)i. The result when A == II is 
especially interesting since in this case ml (t) = i so the mean popula­
tion size stays fixed at i persons for all time. But the variance of the 
population size grows linearly with time (as shown in Exercise 2(d)) and 
ultimate extinction turns out to be an event that occurs with probabil­
ity 1. 

4. (a) Show that formula (15) for the person-years lived in (tl.t2) '~an be 
written as (nz - nd/r if r ~ ° and as nl(tz - ttl if r = 0. 

(b) Assuming exponential growth as in equation (14), show that the 
size of the population doubles in (ln2)/r years. Using the data in 
Table 1 for the period from 1960 to 1980, show that the doubling 
time for the world population is about 36 years. Compute the 
doubling time over the six earlier periods in Table 1. 

5. Westing [13J uses the data in Table 2 to obtain his estimate of 50 billion 
humans who have ever lived on the Earth. Determine the total number 
of person-years lived and the total number of persons born in each of 
the seven intervals into which the period from 298,000 B.C. to 1980 
is subdivided. Show that Westing's total should be about 46 billion. 
(His Table 3 includes a calculating error leading to the reporting of 
17.7 instead of the correct 14.1 million persons born in the period from 
8000 B.C. to 0.) 

Date World Population Life Expectancy (Years) 

298,000 B.C. 2 
20 

40,000 B.C. 3,000,000 
25 

8,000 B.C. 5,000,000 
30 

° 200,000,000 
35 

1650 500,000,000 
40 

1850 1,000,000,000 
45 

1945 2,300,000,000 
50 

1980 4,400,000,000 

Table 2. World population from Westing [13]. 
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6. Using the data in Table 1 and a fixed 25-year life expectancy, the 
4.4 billion persons alive in 1980 represent just under 5% of the 95 billion 
persons who have ever lived on the Earth. Extend the calculations to 
the year 2000 by using n(1990) = 5.3 X 109 and n(2000) = 6.2 X 109 , 

as estimated by the United Nations [12]. Thus show that the 6.2 billion 
persons alive in 2000 will make up almost 9% of the 99 billion persons 
who will have ever lived on the Earth by that time. 
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Chapter 3 
Management of Research Projects 

1. Introduction 

Problems involved in planning and managing research and development 
projects have been studied by a number of investigators. The probabilistic 
models they have constructed are generally considered a part of operations 
research or managerial economics. We formulate and solve two such prob­
lems here. In addition to illustrating the use of ideas and techniques from 
probability theory, they also serve as vehicles for the introduction of some 
important ideas of dynamic programming (Problem 1) and of discounting 
and present value of cash flows (Problem 2). 

Problem 1 concerns the allocation of money from a limited budget 
in order to fund alternative independent proposals for achieving a given 
objective. The idea of management trying to maximize the probability of 
achieving the project objective by supporting more than one competing 
proposal, of building redundancy into what is funded, assuming the budget 
allows such multiple efforts, is reasonable enough. Note the distinction 
between this managerial goal (achieve the objective, one way or another) 
and the more complex goal, for example, in managing a portfolio of stocks 
in order to maximize expected return. In Problem 1, one successful proposal 
achieves management's objective even if other funded proposals do not pan 
out. But one "successful" stock in a portfolio is not sufficient cause for 
rejoicing since the performance of the other stocks in the portfolio cannot 
be ignored. 

Problem 2 develops a simple version of a model to guide a company's 
decision on whether or not to initiate a project and, once started, whether 
to continue it to completion or shut it down if it hasn't been successfully 
concluded after a certain length of time. Balancing is required of the poten­
tial monetary gain to be earned upon successful completion against the an­
ticipated costs of continued operation. Both this gain and operating costs 
are assumed known, and simplifying (and somewhat unrealistic) assump­
tions about these quantities are imposed to make the problem tractable. 
Randomness is introduced by treating the project completion time as a 
chance variable. 

2. Problem 1 
Suppose a new foundation or research institute has a specific project objec­
tive (finding a cure for some disease, for example) and has received proposals 

33 
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from a number of different teams of researchers who suggest different and 
independent technical alternatives for accomplishing the objective. (One 
team suggests research with viruses, another with controlled diets, another 
with preventive drug treatment, etc.) Each alternative has assigned to 
it a probability of being successful in achieving the objective as well as a 
cost for carrying it out. The foundation or institute has budgeted a certain 
total amount of money for funding one or more of these alternatives and 
naturally wishes to do so in such a way that it maximizes the probability of 
achieving its project objective. How should it allocate funds to the various 
research teams who have submitted proposals? 

Let us introduce symbols as follows: 

Pi = probability that alternative i is successful if funded, 
Ci = cost of carrying out alternative i, 
B = total amount (in $) budgeted (Le., available to be allocated) for 

this project. 

Of course, i = 1, 2, ... , n where n is the number of independent alternatives 
seeking support. For each positive integer n we wish to know which alter­
natives to support, within the total allowable budget of $B, so the prob­
ability of achieving the project objective is maximized. Our procedure is to 
divide the problem into stages, solving each successive stage until we have 
a complete solution. In stage 1 we will pretend to have only alternative 1 
available; in stage 2 we will have alternatives 1 and 2; in stage 3 we consider 
alternatives 1, 2, and 3; etc. At each stage, we seek an optimal choice of 
alternatives, optimal in the sense of making the probability of achieving 
the project objective as large as possible, conditional on the available alter­
natives and, of course, satisfying the total cost constraint. Let us define 
h(B) as this maximum probability of achieving the project objective for 
an optimal set of alternatives chosen from the first i alternatives when the 
total amount budgeted for the project is $B. 

For i = 1 we have only alternative 1 to consider and so the best policy 
is clear: fund alternative 1, but only if it can be afforded. In symbols: 

!I(B) = {~l if Cl ::; B 
if Cl > B. 

Next we move to stage i = 2. If C2, the cost of alternative 2, exceeds the 
total available money B, then we clearly can do no better than the best we 
could do with just alternative 1, Le., 

h(B) = !I(B) if C2 > B. 

But if C2 ::; B we must consider the possibility that funding alternative 2 
is worthwhile. So we compare the probabilities of achieving our objective 
under two plans: 
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Plan 1. Fund alternative 2 first and then (having reduced the problem 
to stage 1), fund alternative 1 if sufficient money still remains. 

Plan 2. Do not fund alternative 2 and do the best we can considering 
only alternative 1 (a stage 1 problem). 

Of course, since our aim is to maximize the probability of achieving the 
objective, we will choose the plan with the larger probability. With Plan 2 
we know the best we can do yields the probability !I (B). With Plan 1 
the probability of achieving the objective (Le., having at least one of the 
two alternatives result in success) is most easily computed by subtracting 
from 1 the probability that both alternatives will fail. The probability that 
alternative 2 fails is 1 - P2. Since we have now spent C2 dollars, only B - C2 
remain. With this amount available and only alternative 1 to consider, the 
best probability of success is known from stage 1 to be !I(B - C2). Hence, 
since we assumed independence of alternatives, the probability that both 
alternatives fail is (1- P2)(1- !I(B - C2»). Subtracting this product from 1 
gives the probability of achieving the objective under Plan 1. Denoting 
the larger of the two numbers a and b by Max[a, bJ, we can summarize our 
argument by writing the following solution for the stage 2 problem: 

h(B) = {Max[1 - (1 - P2)(1 - !I (B - C2)), 11 (B)J ~f C2 ~ B 
!I (B) If c2 > B. 

Note the way this stage 2 solution used the previously obtained solution 
for stage 1. And we continue in this sequential manner, the derivation 
for any stage making the same use of the preceding stage solution that the 
stage 2 derivation made of the stage 1 solution. The result for n alternative 
research proposals (stage n) can be summarized as follows: 

f (B) - {Max[1- (1 - Pn)(1- in-I(B - cn)), In-I(B)J if Cn ~ B 
n - in-l (B) if Cn > B. 

To illustrate the use of these recursive equations, consider a problem 
with three independent proposals for achieving the research objective and 
with probabilities and costs given by 

PI = .7 P2 = .3 P3 = .6 

CI =4 

Some sample calculations: 

C3 =3. 

f (B) - {Max[1 - (1 - .3)(1 - !I(B -1»), !I(B)J 
2 - !I (B) 

if 1 ~ B 
if 1 > B, 

from which, since !I(B) = .7 if 4 ~ Band !I(B) = 0 if 4 > B, 

12(2) = Max[1- (.7)(1 - 0), OJ = .3, 

12(3) = Max[l- (.7)(1 - 0), OJ = .3, 

12(4) = Max[1- (.7)(1-0), .7J = .7, 

12(5) = Max[1 - (.7)(1 - .7), .7J = .79, etc. 
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Finally, 

f (B) - {Max[l- (1- .6)(1 - h(B - 3)), 12 (B)] 
3 - h(B) 

from which 

13(2) = 12(2) = .3, 

13(3) = Max[1 - (.4)(1), .3] = .6, 

13(4) = Max[1 - (.4)(.7), .7] = .72, 

13(7) = Max[1 - (.4)(.3), .79] = .88, 

if 3 ::; B 
if 3 > B, 

13(8) = Max[1 - (.4)(.21), .79] = .916, etc. 

From these maximum probabilities fi(B) we also automatically deter­
mine whether or not to fund a particular alternative. For example, consider 
the stage 3 probabilities and suppose B = 7. The maximum value of the 
two probabilities used to compute 13(7) is the first probability, the one cor­
responding to Plan 1. We conclude that alternative 3 is funded. This leaves 
us with B - C3 = 7 - 3 = 4 as available funds for stage 2. In computing 
12(4), the maximum value is the Plan 2 probability and so alternative 2 is 
not funded and we still are left with available funds equal to 4 for stage 1, 
just sufficient to fund alternative 1. So with B = 7, the optimal choice is 
to fund only alternatives 1 and 3 and this produces a maximum probabil­
ity equal to 13(7) = .88 for achieving the research objective. Of course, 
if B ~ 8 then all three alternatives should be funded and the maximum 
probability of achieving the objective rises to .916. 

Total Alternative 1 Alternative 2 Alternative 3 

Budget PI = .7, CI = 4 P2 = .3, C2 = 1 P3 = .6, C3 = 3 

B Fund? h(B) Fund? 12 (B) Fund? 13 (B) 

0 no 0 no 0 no 0 
1 no 0 yes .3 no .3 
2 no 0 yes .3 no .3 
3 no 0 yes .3 yes .6 
4 yes .7 no .7 yes .72 
5 yes .7 yes .79 no .79 
6 yes .7 yes .79 no .79 
7 yes .7 yes .79 yes .88 
8 yes .7 yes .79 yes .916 

Table 1. Summary of optimal decisions for illustrative example. 

Table 1 summarizes all such decisions and calculations and can be used 
to read the solution to our illustrative problem for any total budgeted 
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amount B. For example, we can easily verify our previously obtained 
solution when B = 7. Starting at the B = 7 row and the alternative 3 
column, we read "yes" so alternative 3 is funded at its cost of C3 = 3 and 
with 13(7) = .88. Now we have B - C3 = 4 left in available funds, so going 
across the row with cost 4 we read "no" under the alternative 2 heading. 
Hence alternative 2 is not funded and we move to the left in the same row, 
find a "yes" in the alternative 1 column, and thus conclude, as before, that 
with B = 7 the maximum probability of achieving the objective is .88 and 
alternative proposals 1 and 3 are funded in order to reach this best chance 
of success. 
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Figure 1. Optimal decisions and probabilities for illustrative example. 

Figure 1 is a graphical representation of our solution for this illustrative 
example. It makes clear the way the maximum probability of achieving the 
project objective varies (from 0 to .916) with the total amount budgeted for 
the project. Appearing below each value of the total budget B are other 
features of tIle optimal solution: the alternatives to be funded and the total 
amount actually spent. 

Larger problems, with many more alternatives, could be solved in a 
similar fashion although the number of calculations becomes burdensome. 
But the recursive nature of the solution makes it particularly suited for a 
high-speed computer and one can program such a computer to produce a 
general summary of results like Table 1 or a solution for one or more special 
problems with particular values of B. We thus have a practical method of 
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determining the optimal set of alternative research proposals that should be 
supported and the maximum probability of achieving the research objective 
as a function of the number of proposed alternatives and the total funds 
available. 

3. Problem 2 

A company is presented at some time (which we take to be t = 0) with 
a proposal for a research project. Implementing this project requires con­
tinuous company expenditures at a constant rate of c (in dollars, say) per 
year. The completion time for the project depends on many uncontrollable 
factors and is assumed to be a positive random variable T (years) with 
a known cumulative distribution function F and probability density func­
tion f. That is, we have 

Pr(a < T < b) = ib 
f(t)dt (b > a 2: 0) 

and 

F(x) = Pr(T ::; x) = fox f(t)dt (x 2: 0). 

If the project is completed, there is a return to the company (valued at the 
moment of completion) of R dollars. 

The problem is to decide on the company policy: Is it worth undertak­
ing the research project? Once undertaken, should it be continued until 
completion or should it be shut down if it hasn't been concluded after a 
certain length of time? 

In order to approach these questions we need to decide on a method by 
which our company will measure the investment worth of a given course of 
action involving both income received and expenditures paid out over time. 
Money and other resources used by the company are not free. After all, 
money could be used to earn interest in a bank account or be invested to 
earn a return in some other venture. Suppose money earns interest at the 
compound annual rate lOOr% and is compounded n times per year. Then 
A dollars today amounts to 

( r )nt A 1+;;: 

dollars after t years since the interest rate per conversion period is 100r In 
percent and there are nt compoundings in the t years. As n -+ 00, i.e., as 
interest is compounded more and more frequently, the amount after t years 
increases to Aert since 

lim (1 + .:.)n = er. 
n->oo n 
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We say that Aert is the amount resulting after t years from an initial 
investment of A under continuous compounding at the rate lOOr% per year. 
We shall adopt continuous compounding and use the symbol r to specify the 
applicable annual interest rate, assumed to stay the same for the duration 
of the project. Of course, it follows that if an amount A dollars is received 
t years in the future, it is discounted to the present by multiplication by 
e-rt and we refer to Ae-rt as its present value. 

We assume the company uses net present value as its measure of 
investment worth. Having decided on an appropriate interest rate, company 
executives compute the present value of the cash inflow from the investment 
minus the present value of the cash outflow. If this difference, the so-called 
net present value of the project, is positive then the investment opportunity 
is accepted and the project starts. If the net present value of the project is 
negative or zero, the opportunity is rejected. 

There is a complication in our problem due to the fact that the net 
present value of the project, depending as it does on the random completion 
time T, is itself a random variable. In this case, we determine the mean 
or expectation of the net present value and adopt as company policy the 
following decision rule: Accept the proposal and let the project start if its 
mean net present value is positive; otherwise reject the proposal. 

We now turn to the analysis needed to implement this decision rule. 
Denote by vo(T) the net present value at time 0 of the project carried out 
to completion at time T. We must discount back to time 0 all costs and 
returns. The return R obtained at completion time T has present value 
Re-rT at t = O. The stream of cash outlays at the rate c per unit time 
and occurring continuously throughout the time interval (0, T) has present 
value given by the integral* 

loT ce-rt dt 

which, when evaluated, equals (c/r)(1 - e-rT ). Hence 

(1) 

Since T is actually a random variable, so is vo(T). We therefore base our 
decision on 

w(O) = E[vo(T)], 

*Divide the interval (0, T) into n equal subintervals, each of length l1t. The 
cash outlay in each subinterval is cl1t. If ti is an arbitrary point selected in 
the ith subinterval, then cl1te-rti is approximately the discounted value of the 
outlays made in the ith subinterval. And I:~=1 ce-rti l1t is approximately the 
present value of all outlays made in the entire interval (0, T). In the limit, as the 
number of subintervals increases without bound, this (Riemann) sum approaches 

the integral JoT ce-rt dt, which is taken as the present value of the continuous 
outlays over (0, T). 
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the mean (or expectation) of the net present value of the project at time O. 
Since T has density function f, 

w(O) = 1000 

vo(s)f(s) ds 

and using (1), 

100 
c c 

w(O) = -- +(R+ -) e-rSf(s)ds. 
r r 0 

(2) 

The mean net present value decision rule adopted by the company can be 
stated as follows: 

Start the project if w(O) > 0; do 
not start the project if w(O) ~ o. 

The sign of w(O) will depend on both the values of the constants c, r, and R 
and on the probability density function of the random completion time T. 

Now suppose the project, having been supported for t years but not 
yet completed, is reevaluated to see if funding should be continued. Let 
vt(T) denote the net present value of the project at the time t, assuming 
it will be continued until completion. To compute vt(T) requires that we 
discount back to time t both the return R at completion time T and the 
costs being continuously expended over the interval from t to T. We obtain 

Vt(T) = Re-r(T-t) _ iT ce-r(s-t)ds 

or, evaluating the integral, 

() -r(T-t)( c) c Vt T = e R + - - -. 
r r 

(3) 

As before, we note that Vt(T) is a random variable and so we define 

w(t) = E[Vt(T)], 

the mean net present value of the project at time t, conditional on the event 
that T > t, i.e., that the project has been operating from time 0 to t and 
will be continued until completed. Since 1 - F(t) is the probability that 
T> t, the density function of T conditional on T > t has the value 

f(s) 

1 - F(t) 

at any time s > t. Hence, using (3), 

w(t) = _~ + (R +~) roo e-r(s-t) f(s) ds 
r r Jt 1- F(t) 
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or, after simplifying the integral, 

c c ert 100 

wet) = -- +(R+ -) F() e-rSf(s)ds. 
r r 1- t t 

(4) 

Note that when t = 0 this formula reduces to that given for w(D) in (2). 

If wet) > 0, then the company decides at time t 
to continue the project; if w( t) :::; 0, the project 
is better shut down at time t. 

To illustrate these policy decisions, suppose first that T is exponentially 
distributed, i.e., f(x) = be-bx for x 2:: 0 where b is a positive constant. 
(One can easily show that E(T) = lib so b is the reciprocal of the mean 
completion time.) Now 

and from (4), 

Pr(T> t) = 1- F(t) = [00 f(s)ds = e-bt 

wet) = -~ + (R + ~) be(r+b)t 100 
e-(r+b)s ds 

r r t 
-(r+b)t 

= -~ + (R + ~)be(r+b)t-:e_--:-:-
r r (r+b) 
c b c 

= -r + r+b(R+ r) 
Rb-c 
r+b' 

Thus wet) is a constant independent of t and we conclude that if w(O) > 0 
then wet) > 0 for all t: a project once started is supported to completion 
by the company. Note also that in this special case the sign of wet) depends 
only on whether Rb is greater or less than c, and is not influenced by the 
discount rate r. (The quantity Rb is the project's average annual payoff 
until completion since it is the payoff R divided by lib, the mean number 
of years until completion of the project. The quantity c is the corresponding 
annual cost.) These results, of course, depend on the assumed exponential 
density of the completion time T and are not generally true. 

Suppose now that a project is worth starting, i.e., it has a positive 
mean net present value at t = O. It is important to realize that such 
a project, if not completed by some subsequent time t > 0, can have a 
negative mean net present value at time t. If the project were reviewed at 
that time, we would conclude that it should be abandoned, even though 
it was worth starting when initially evaluated. What follows is a specific 
numerical example to illustrate this possibility. 
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Suppose the completion time T has probability density function f given 
by 

{ 
1/2 if 0 < x < 1 

f{x) = 1/2 if 3 ~ x ~ 4 
o elsewhere. 

The project is as likely to be completed in the first year as the fourth year 
and if not completed in the first year is sure to require somewhere between 
two and three more years to complete. From (2) we compute 

C C 111 1 i4 w{O) = -- + (R + - )[-2 e-rs ds + - e-rs ds] 
r r 0 2 3 

and evaluating the integrals and simplifying, 

C C 
w{O) = -- + {R + - )(1 - e-r + e-3r - e-4r )/2r. 

r r 

Similarly, using (4) and noting that 1 - F{l) = P{T > 1) 1/2, we 
compute 

from which 
C C 3 w{l) = -- + (R + -) er{e- r _ e-4r )/r. 
r r 

If we put C = 1, R = 2.5, r = .1, and do the required calculations we find 

w{O) = -10 + (12.5){.828) > 0 

but 
w{l) = -10 + (12.5){.779) < 0, 

thus confirming that this project, once started and seen not to be completed 
by the end of the first year, is best terminated at that time. The return 
is large enough to make the first year's cost worth paying. But when that 
year proves to be too short to complete the project, the anticipated return 
is no longer sufficient to justify at least two more years of cash outlays. 

4. Bibliographic Notes 

Problem 1 is discussed and solved by Dean [3]. This solution exemplifies the 
sequential solution technique employed in dynamic programming, a subject 
with many important applications and a large literature. We list three 
general references whose bibliographies will lead the interested student 
to many other sources: Dreyfus and Law [4], Hillier and Lieberman [6], 
Wagner [13]. A short technical note by Boyd [21 shows how the ordinary 
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process of long division can be formulated as a dynamic programming 
procedure. The volume by Howard [7J applies dynamic programming to 
Markovian decision processes. Techniques from dynamic programming are 
used by Marshall [l1J to determine an optimal sequence of items or stimuli 
in testing the learning of a skill. 

Problem 2, along with modified versions requiring more advanced 
methods of analysis, is solved by Lucas [lOJ. For a discussion of various 
measures of investment worth, only one of which (net present value) is used 
by Lucas, see Bierman and Smidt [lJ. 

The general problem posed in Exercise 2 can be found in Mitten [12J and 
with variations in Dean [3J and Joyce [8J. A variation known as the "obstacle 
course problem" is discussed by Goodman [5J. All of these are special cases 
of the more general collection of "quiz show problems" introduced and 
solved by Kadane [9J. 

Exercises 

1. A project requires the successful completion of three tasks in any order, 
but the project is terminated as soon as a task results in failure. The 
probability of success and the cost associated with each task are as 
follows: 

Task Number 
1 
2 
3 

Probability of Success 
.8 
.6 
.7 

Cost ($OOO's) 

5 
7 
8 

Assume that the success or failure of each task is independent of the 
outcomes of the other tasks. 

For each possible ordering of the three tasks, compute the mean 
project cost and thus verify that this project is carried out with least 
mean cost of $13,840 by trying its three tasks in the order 2, 1, 3. 
Using this optimal order, what is the probability that the project will 
be successfully completed? 

2. To generalize Exercise 1, suppose now that there are n tasks with 
task number i having cost Ci and non-zero probability of success Pi. 
(The probability of failure is therefore qi = 1 - Pi .) As before, all 
n independent tasks must be successfully completed, but the project 
concludes as soon as one task results in failure. Proceed as follows 
to prove the general result: Minimum mean cost of the project occurs 
when tasks are attempted in the order of non decreasing cd qi ratios. 
Of course, tasks with zero cost should be tried first and tasks with zero 
failure rate should be tried last in any order among themselves. 
Step 1. Let the mean cost associated with an ordering of the tasks 
be denoted by E( Cj ) with the ordering specified after the semicolon. 
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Investigate the effect of interchanging two neighboring tasks, say j and 
J' + 1, by computing 

E(C;1,2, ... ,j,j+1, ... ,n)=c, say, 

and 
E(C;1,2, ... ,j+1,J·, ... ,n)=c', say, 

and showing that 

c' - C = PIP2 ... Pj-I(Cj+1 + Pj+ICj - Cj - PjCj+t}. 

Step 2. Assuming no Pi equals 1 (equivalently, no qi equals 0) and no 
cost Ci equals zero, show that 

Cj+1 c· 
c' > C if and only if > 2.. 

qj+1 qj 

Step 3. Complete the proof. 

3. Consider the following special cases in Exercise 2. If all costs Ci are 
the same, then it makes sense to perform high-risk tasks first; if all 
probabilities of success Pi are the same, then it makes sense to perform 
low-cost tasks first. Verify that these intuitively reasonable conclusions 
follow from the general result in Exercise 2. 

4. Apply the result of Exercise 2 to a project involving five tasks with 
costs and probabilities of success as follows: 

Task Number Probability of Success Cost ($OOO's) 

1 .2 16 
2 .1 9 
3 .3 12 
4 
5 

.3 

.1 
14 
10 

Show that the least mean project cost of $10,176.40 occurs with either 
of two orderings of the tasks: 2, 5, 3, 1, 4 and 2, 5, 3, 4, 1. 

5. Consider the foundation in Problem 1 of the text faced with two pro­
posals with success probabilities and costs specified as follows: 

PI =.7 P2 =.3 

CI = 50 C2 = 20. 

Show that the foundation maximizes its probability of achieving the 
project objective by adopting the following strategy: If the total 
amount budgeted for the project is B, then 

if O:S: B < 20, fund neither proposal; 
if 20 :s: B < 50, fund proposal 2 only; 
if 50 :s: B < 70, fund proposal 1 only; 
if 70 :s: B, fund both proposals. 

Construct a table like Table 1 and a figure like Figure 1 for this 
example. 
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6. Consider Problem 1 of the text with 

(a) three proposals: PI =.7 P2 =.3 P3 =.4 
CI = 5 C2 =2 C3 = 6 

(b) four proposals: PI =.7 P2 =.3 P3 =.5 P4 =.4 
CI = 5 C2 = 2 C3 = 6 C4 = 3. 

In each case, determine !t(B), h(B), ... for appropriate values of 
B and summarize your findings concerning the optimal allocation of 
funds to the competing proposals by means of a table like Table 1 
and a figure like Figure 1. As in Figure 1, for each value of the total 
budget B, you should specify the alternatives to be funded and the 
total amount actually spent. 

7. Write a computer program for determining the optimal solution of 
Problem 1 for arbitrary (but suitably limited) values of B, the total 
amount budgeted for the project, and n, the total number of indepen­
dent alternatives seeking support. Your program, when applied to any 
particular problem, should require as input the values of B, n, Pi, Ci 

(i = 1,2, ... , n), and should then generate as output the maximum 
probability In(B) of achieving the research objective as well as the 
corresponding set of alternative proposals to be funded. If you can 
manage it, try to produce output in tabular form (as in Table 1) or in 
graphical form (as in Figure 1). Test your program on the illustrative 
example worked out in the text or on the examples in Exercise 6. 

8. In Problem 2 of the text, suppose the random variable T is degenerate 
and is actually a constant (= To, say). Thus we are assuming that 
there is a known and fixed completion time for the project. 

(a) Determine vo(To). 

(b) Noting that vo(To) is now no longer a random variable, formulate 
the company's decision rule for accepting or rejecting the proposal. 

(c) Assuming the project is undertaken at time 0, compute its value 
at time t for 0 < t < To. Thus show that any project worth 
undertaking at t = 0 increases in value over time and therefore 
should be continued until completion. 

9. In Problem 2 of the text, suppose the completion time T is uniformly 
distributed in (a,b), i.e., I(x) = 1/(b - a) if a :::; x :::; band I(x) = 0 
elsewhere. 

(a) Determine w(O) and wet) for all t < b. 

(b) Suppose w(O) > 0 so the project is worth starting. If you reviewed 
the project at t = a > 0, then surely you would make the same 
decision since you knew at the outset that the project wouldn't 
be completed before elapsed time a. Prove this by showing that 
w(O) > 0 implies w(a) > O. 
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(c) Show that limt __ bw(t) = R. Explain why this is reasonable. 

(d) Show that a project worth starting is worth being continued to 
completion, i.e., if w(O) > 0, then w(t) > 0 for all t in (a,b). 
Explain why this is intuitively reasonable. 

10. In Problem 2 of the text, suppose the completion time T is a random 
variable with a two-parameter exponential probability density, i.e., 

_ {be-b(x-a) if x ~ a 
f(x)- 0 ·f < 

1 X a, 

where a and b are positive constants. This means that T is sure to be 
at least a, but beyond that it is exponential with parameter b. (One 
can easily verify that E(T) = a + lib.) 

(a) Determine w(t) for 0 ::; t < a and for t 2': a and sketch a graph 
of w(t) for t ~ o. 

(b) Show that w(O) > 0 implies w(t) > 0 for all t so that such a 
project, once started, is carried out to completion. 

11. In Problem 2 of the text, suppose the completion time T is Gamma 
distributed, i.e., f(x) = k(a, b) xa-1e-bx for x > 0, where a ~ 1 and 
b > 0 are constants. k( a,b) is determined by the requirement that f 
be a probability density function, that is, Iooo f( x) dx = 1. (It turns 
out that k(a, b) = ba Ir(a) where the Gamma function is defined by 
r(a) = Iooo ya-l e- y dy.) 

Show that w(t) is no longer a constant independent of t (as in the 
case of an exponentially distributed completion time worked out in the 
text), but nevertheless, if w(O) > 0 then w(t) > o. Thus a project, once 
started, is worthy of continued support until completion. (Note. This 
generalizes the result of the text since the exponential distribution is 
the special case of the Gamma distribution when the parameter a = 1.) 

12. The special case of Problem 2 with completion time T having prob­
ability density function f given by 

{ 
1/2 if 0 ::; x ::; 1 

f(x) = .1/2 if 3 ::; x ::; 4 
o elsewhere, 

was considered in the text. It was shown that this project (with c = 1, 
R = 2.5, r = .1) had w(O) > 0 but w(l) < o. Such a project, if not 
completed by t = 1, should be terminated at that time. 

Suppose now that this project, started at t = 0, is reviewed at 
time t (0 < t < 1). Sketch a graph of w(t) for 0 ::; t ::; 1 and 
show that the smallest elapsed time after which the review leads to the 
project's termination is (to two decimal place accuracy) t* = .82 years. 
Thus a review before t* keeps the project alive, but a review after t* 
kills it. 
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13. Construct another example (different from that in the text) to illustrate 
that a project worthy of being started at t = 0 can become unattrac­
tive if not completed by some later time t and therefore would be 
terminated if reviewed at time t. 
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Chapter 4 
Stochastic Learning Models 

1. Introduction 

How subjects learn has long been of interest to psychologists. Large 
amounts of data are available from experiments in which various out­
puts (responses) of subjects have been studied as functions of a range of 
experimenter-controlled input factors (stimuli). To account for these input­
output relationships is a task for the theorist. In this unit we first consider a 
mathematical model for learning (the so-called all-or-none or one-element 
model) as applied by Bower [7] to a paired-associate experiment. After 
characterizing the formal structure of this model, we introduce a slight 
generalization, the two-stage all-or-none model. The analysis of a learning 
experiment using stimulus sampling theory and leading to a three-state 
Markov chain is outlined in some detail in the Exercises. These models 
are samples from a wide variety of stochastic learning models, mainly de­
veloped since 1950, and applicable to many different experimental situa­
tions. A guide for further reading in mathematical learning theory con­
cludes the unit. 

2. The Experiment and the Model 

In Bower's experiment, 29 subjects learned to associate the correct integer, 
either 1 or 2, with each of ten different pairs of consonant letters. For five 
of the pairs, the integer 1 was the correct response, for the other five the 
integer 2 was correct. A subject was shown one of the consonant pairs, the 
subject responded with 1 or 2, and the correct response was then given -by 
the experimenter. After a short time interval, a second consonant pair was 
presented and the procedure repeated until each of the ten pairs had been 
presented once, completing one trial of the experiment for that subject. The 
deck of ten cards containing the consonant pairs (the stimuli) was shuffled 
before each trial and the experiment continued until the subject made two 
consecutive errorless passes through the deck. 

For each subject and each stimulus, the experiment produces a sequence 
of responses (each response being correct or incorrect) over successive trials. 
The experimenter can then compute such statistical features of the data 
as the total number of errors per subject-stimulus sequence, the average 
frequency of errors on each trial, the average trial number of the last error, 

49 
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etc. A theoretical model is then tested by how well it predicts or fits such 
observed statistical features of the data. 

In the mathematical model, the stimulus is represented by a single 
undefined entity, a construct called a stimulus element. The following 
assumptions are made: 

1. The stimulus element is in one of two states on each trial, either statlj C 
(conditioned to the correct response) or state C' (not conditioned). 

2. The stimulus element is in state C' at the beginning of the experiment, 
i.e., at the start of trial number 1. 

3. Each time a particular stimulus is presented, the subject samples (or 
inspects) the corresponding stimulus element. If it is in state C, then 
the subject is sure to make the correct response. If, however, the 
stimulus element is found in its unconditioned state C', then the subject 
has only a lesser probability, say g < 1, of responding correctly. (g is 
a guessing parameter. So in Bower's experiment, where the response is 
either 1 or 2, g was put equal to 1/2 to represent the subject's chance 
of merely guessing the correct response.) 

4. Finally, the model must specify the effect of a reinforcement (i.e., the 
subject's hearing or seeing the correct response on each trial) on the 
state of the stimulus element. On each trial, if the stimulus element 
is already in state C, it stays there. But if it is in state C', then it 
undergoes a transition to state C with probability c (0 < c < 1). 

Assumption 3 embodies the all-or-none feature of the model: when the 
stimulus is presented, the corresponding response is either known perfectly 
or known not at all so that merely a guess at the correct response is 
made. The model is extraordinarily simple and generalizations immediately 
suggest themselves. More than one stimulus element may reasonably be 
assumed to correspond to each stimulus. On each trial, the subject may 
sample more than just one stimulus element and the subject's response 
might then depend on how many and which of the stimulus elements are 
conditioned to the correct response. Such more elaborate models have been 
studied and we shall say more about them further on, but now let us return 
to the simple one-element all-or-none model. 

3. Consequences of the Model 

It is convenient to introduce a random variable Xn that indicates the nature 
of the response (for a given subject and stimulus) on trial n: 

x = {O if a correct response is given on trial n 
n 1 if an error occurs on trial n. 

(Such a counting random variable appears quite often in probability theory 
and its applications. It takes a qualitative outcome of an experimental trial 



STOCHASTIC LEARNING MODELS 51 

(correct response or incorrect response, for example) and maps it into the 
numerical value 0 or 1.) 

Let On and O~ denote the stimulus element being in state 0 or 0', 
respectively, at the end of trial n. We now derive some consequences of the 
assumptions made in the model and then see how they fit the experimental 
data. 

Result 1. The probability of an error diminishes as the experiment 
proceeds and approaches zero according to the formula 

Pr(Xn = 1) = (1 - c)n-I(1 - g) n= 1,2, .... (1 ) 

Proof. Errors can occur only when the stimulus element is unconditioned, 
and they occur then with probability 1 - g. Hence 

Pr(Xn = 1) = Pr(0~_I)(1 - g). 

But O~_l occurs if and only if the stimulus element, known to start in 
state 0' at the beginning of trial 1 (Assumption 2) stays ·in this state at 
the end of trials 1,2, ... , n -1. For, by Assumption 4, were it ever to leave 
this state and move to 0, then it would stay there. Since the probability 
of staying in 0' on any trial is (1- c), we have Pr(O~_I) = (1- c)n-l and 
thus Formula (1). 

Since 0 < c < 1 and 1 - g > 0, this probability decreases steadily and 
approaches zero as n ~ 00, as claimed. 

Result 2. Let T denote the total number of errors made by a subject on 
a given stimulus. Then the mean (expected value) of T is given by 

E(T) = 1- g. 
c 

(2) 

Proof. Note first that T is given by the sum Xl + X 2 + ... since each Xn 
contributes 1 to the sum if the n-th trial produces an error and contributes 
o to the sum otherwise. Hence 

But 

Hence 

00 

E(T) = E( L Xn) 
n=l 

00 

= L[E(Xn)). 
n=l 

E(Xn) = 1· Pr(Xn = 1) + O· Pr(Xn = 0) 
= (1 - c)n-l(l - g), from (1). 

00 

E(T) = (1- g) L (1 - c)n-l 
n=l 

and summing the geometric series we obtain (2). 
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Note that we are able to find the mean value of random variable T 
without first knowing its probability distribution. The next result derives 
this distribution. 

Result 3. 

{ b9 ifn=O 
Pr(T = n) = b(l _ b)n 1(1 - c) if n ;::: 1 (3) 

where 
b= c 

1- g(l- c) 
(4) 

Proof. Once the subject learns (i.e., the stimulus element enters state C), 
no errors can be made. But the subject, in theory at least, can keep 
guessing correctly even if learning hasn't yet taken place (i.e., the stimulus 
element is in state C'). Thus the event T = 0 can occur in the following 
mutually exclusive ways: the subject responds correctly on trials 1,2, ... ,k 
by guessing, but actually first learns on trial k, for k = 1,2,.... The 
probability of correct guessing on trials 1 to k is gk and the probability of 
first learning on trial k is given by 

Hence 
00 

Pr(T = 0) = L gk(l - ct-1c 
k=l 

00 

= gc L [g(1 - c)]k-l 
k=l 

I 
= gc = gb 

l-g(l-c) , 

as claimed in (3). 
If n ;::: 1, the event T = n can occur in the following mutually exclusive 

ways: the subject first learns on trial n + k and among the guesses made on 
trials 1,2, ... ,n + k, there are exactly n incorrect and k correct responses, 
for k= 0, 1, .... The probability of first learning on trial n + k is given by 

Since the n + k guessing trials are independent and the probability of an 
incorrect guess is 1 - 9 on each such trial, the probability of exactly n 
incorrect responses is obtained from the binomial distribution. Thus 
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Rewriting, we have 

00 (n + k) Pr(T = n) = (1- c)n-1c(1- gt L [g(1- c)]k. 
k=O n 

(5) 

But 

( n + k) = (n + k)(n + k -1) ... (n + 1) 
n k! 

and writing the numerator with factors in reverse order, 

( n + k) = (n + l)(n + 2) ... (n + k) 
k' . n . 

Now let a = -n - 1 and note that 

( n + k) = (_l)k a( a-I) . .. (a - k + 1) . 
n k! 

Hence we recognize the sum in (5) as the binomial series expansion* 
(convergent since 0 < g( 1 - c) < 1) 

Thus 
Pr(T = n) = (1 - ct-1c(1 - gt[l - g(l - c)J-n-l 

C [(1 - g)(l- c)]n 1 
= 1 - g(1 - c) 1 - g( 1 - c) 1 - c 

b(l - b)n 

1-c 

and the proof of (3) is complete. 
Many additional results can be derived in a similar fashion. (See 

Bower [7J for further details.) But let us briefly illustrate how the results 
derived are compared to observed experimental statistics. 

Consider, for example, equation (1) for the probability of an error on 
trial number n. In Bower's experiment, guessing is done between just two 
possible responses (lor 2) and so 9 is taken to be 1/2. But a value for the 
parameter c of the model is also needed. Although many difficult problems 
in statistical estimation arise in applying learning models to data, in this 
case it seems quite reasonable to estimate c by equating an experimentally 
obtained average number of errors to the theoretically predicted mean given 

*For a discussion of the binomial series, see the chapter on infinite series in almost 
any calculus book. 
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in equation (2). Bower found in his experiment that the average number 
of errors per item was 1.45. Equating E(T) in (2) to 1.45, the estimated 
value of c turns out to be .345 (Bower uses .344). Hence, from (1), Bower 
obtained (.5)(.656)n-l as the theoretically predicted proportion of errors on 
trial n for n = 1,2, .... The corresponding observed proportions can be 
calculated from the experimental data. The excellent agreement between 
observed and theoretically predicted curves (so-called learning curves) is 
shown in Figure 1. 

-..... 
II 

c: 
X 
1:" 
a.. 

.50 

.40 

.30 

.20 

.10 

0 

o 0 Theory 
o----~ Data 

2 3 4 5 6 7 8 9 10 11 12 13 
Trial number n 

Figure 1. Pr(Xn = 1), the probability of an incorrect response over successive 
trials of the experiment; from Bower [7, p.260j. 

With c estimated, (3) and (4) yield theoretically predicted values for 
the distribution of T, the total number of errors per stimulus-response pair 
and for a given subject. Again (see Figure 2) there is substantial agreement 
between theory and. observation. 

4. Extensions and Further Reading 

The all-or-none model, first introduced by Estes [131 as a part of his general 
development of stimulus sampling theory, accounts for data quite well in 
simple experiments. Although still used (see Brainerd and Howe [8], for 
example) it proves inadequate for more complex learning situations. (See 
Suppes and Ginsberg [35].) Some idea of the direction of generalization 
suggested in the literature can be better understood if the formal structure 
of the all-or-none model is made clear first. 

A collection {G, G/} of two states is postulated, exactly one of which a 
subject occupies on each trial. There is introduced a stochastic mechanism 
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Figure 2. Distribution of T, the total number of errors per stimulus-response 
pair; from Bower [7, p.261J. 

governing state to state transitions, summarized by the transition probabil­
ity matrix 

C 

p= C (1 
C' c 

(6) 

recognized as a transition matrix of a Markov chain. The learning states C 
and C' have error probabilities associated with them given by the column 
vector 

(0) (g' = 1 _ g) 
g' 

which merely symbolizes the fact that in state C there is a zero probability 
and in state C' a probability equal to g' of making a response error. Finally 
there is the initial state row vector (0,1) which expresses the assumption 
that we are certain to start in the unconditioned state. 

This Markov model has one additional noteworthy feature. We saw 
in (1) that the error probability goes to zero with n. This is reflected in the 
transition probability matrix governing transitions from the initial time to 
trial n. Since this n-step transition matrix is just the n-th power of the 
matrix for I-step (trial) transitions, it is easy to establish (Exercise 8) that 

(7) 

It is then clear that the probability of a transition from state C' to state C 
approaches 1 as n - 00 and once in C, one stays there. That is, state Cis 
a so-called absorbing state. 
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If the learning situation is more complex than suitable for this one­
stage all-or-none structure, a natural generalization is to assume that two or 
more learning stages are involved in mastery of the task. The simplest two­
stage all-or-none model would postulate three possible states: a', an initial 
unlearned guessing state with probability g' of an error; I, an intermediate 
(stage 1 but not stage 2) state with some lower error probability e; and a 
learned state a, with a zero error probability. Thus corresponding to the 
state set, the transition probability matrix P, the error probability vector, 
and the initial state probability vector for the all-or-none Markov model, 
we now have state set {a,I,a'}, a transition matrix of the form 

a I a' 
a (1 

P= I b 
a' 0 

00) 
1- b 0 

a 1-a 

where a and b are model parameters (corresponding to the single parameter 
c in the matrix for the one-stage model), an error probability vector 

and an initial state probability vector (0, 0, 1). 
And one can have variations within this two-stage Markov model 

(different forms for the transition matrix, for example) as well as higher­
order models. Such models are developed by Atkinson and Crothers [2], 
Bernbach [4], Friedman, Trabasso, and Mosberg [14], Greeno [15], Kintsch 
and Morris [21J, and Theios [36J for experiments involving forgetting, 
free recall and recognition, and avoidance learning. All these theorists 
motivated their two-stage theory from psychological considerations, ran 
experiments that provided data from which parameters of the model could 
be estimated, and predicted various learning process statistics that could 
be compared (and which gave close fits) to their observed counterparts. 

Naturally, the more complex the Markov model the more difficult is 
the derivation of the formulas from which predictions can be made. The 
matrix theory developed by Kemeny and Snell [20] is applied to a particular 
learning model in their book. Bernbach [5J and Millward [27J show how 
to use the theory of Markov chains to develop learning process statistics 
for general Markov learning models. Computer programs can be written to 
generate predictions for any particular model and set of parameters. In fact, 
Bernbach shows how his very general formulas can be used to get various 
learning process statistics, including error probabilities, total number of 
errors, etc., for Bower's all-or-none model considered earlier in this unit. 

There is a very large literature devoted to mathematical learning 
theory. There are books by Atkinson, Bower, and Crothers [1], Bush and 
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Mosteller [9], Kintsch [22J, Levine and Burke [24], Niemark and Estes [29J, 
and Norman [30J. The valuable review articles by Atkinson and Estes [3], 
Greeno and Bjork [17], and Sternberg [34] contain extensive bibliographies. 
Mathematical models of learning get some attention in the book by Mur­
dock [28J and the review article of Cotton [11]. And there are textbooks 
on mathematical psychology (Coombs, Dawes, and Tversky [lOJ with an 
associated workbook [6], Greeno [16], Laming [23], Restle and Greeno [31]) 
that have chapters on learning theory. 

Finally, we mention for the interested reader a number of refer­
ences (Crothers [12], Groen and Atkinson [18], Karush and Dear [19], 
Smallwood [32,33]) in which all-or-none and more general learning models 
are used in an analysis of stimulus presentation sequences. These authors 
have computer-assisted instruction in mind and are interested in developing 
presentation strategies that optimize learning efficiency or other learning­
related objectives. Marshall [26] combines techniques from dynamic pro­
gramming and probability to investigate the effect of ordering of items or 
stimuli in testing the learning of a skill. 

Exercises 

1. In Bower's model, the random variable T = 2::=1 Xn is the total 
number of errors made by a subject. Give interpretations for the 
variables L, Rj,n, Rj, and R, defined as follows: 

(a) L = j if Xj = 1 and Xk = ° for k > j. 
(b) R- n = {1 if X k = 1 for k = n, n + 1, ... , n + j -1, 

J, ° otherwise. 

(c) Rj = 2:~1 Rj,n' 
(d) R = 2:7'=1 Rj. (Distinguish between the runs counted by Rand 

by R1 - R2.) 

2. With notation as in Exercise 1, (a) show that T = R1 and (b) verify 
that for the response sequence 1,1,1,0,0,1,1,0,0,0,0,0, ... we have L = 7, 
R1 = 5, R2 = 3, R3 = 1, and hence R = 9. 

3. Suppose an error occurring on trial number n is weighted by the factor 
Wn and define Yn = wnXn. Let S = 2:~1 Yn. (Note that S reduces 
to T, the total number of errors made by the subject, if Wn = 1 for 
all n.) Show that 

(a) E(S) = (1 - g)/c2 if Wn = n. 
(b) E(S) = ((1- g)/(I- c))log(l/c) if Wn = l/n. 

4. Let Z denote the number of the trial on which the last error occurs. 
Show that 

{ b9 ifn=O 
(a) Pr(Z = n) = b(1- g)(l _ c)n-l if n = 1,2,3, .... 

(b) E(Z) = b(1- g)/c2 • 
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5. For positive integers nand k, show that 

(a) Pr(Xn+k = 1 I Xn = 1) = (1 - c)k(1 - g). 

(b) Pr(Xn = 1,Xn+k = 1) = (1- c)n+k-l(1_ g)2. 

6. With notation as in Exercise 1, show that the expected number of error 
runs is given by 

E(Rl - R2) = (1 - g)(g + c - gc)jc. 

Hint. In computing E(R2), note that E(R2,n) = E(XnXn+d and use 
the result of Exercise 5(b). 

7. Let T denote the total number of errors made by the subject. Show 
that 

Var(T) = I:g +(1-2C{I:gy. 
Hint. Recall that Var(T) = E(T2) - [E(T)]2. In computing E(T2), 
note that E(XnXn+k) = Pr(Xn = I,Xn+k = 1) and use the result of 
Exercise 5(b). 

8. The I-step transition probability matrix (6) can be written in the form 

where, for example, p(l)(CIC') = c denotes the probability of ending 
up in state C after 1 trial, given that the subject started in state C'. 
Similarly, define the n-step transition probability matrix pen) as follows 
for n = 1,2, ... : 

where now, for example, p(n)(CIC') denotes the probability of ending 
up in state C after n trials, given that the subject started in state C'. 

(a) Show that p(2) = p. p = p2 = (C(2 ~ c) (1 ~ C)2 )-

(b) More generally, show for any positive integer n that pen) = pn, 
thus verifying that the n-step transition probability matrix is the 
n-th power of the 1-step transition probability matrix. 

(c) Prove that pn is given by the matrix in (7). 
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Exercises 9-13 consider a simplified version of stimulus sampling theory 
(see Atkinson and Estes [3], Kintsch [22, Chapter 3]), which we summarize 
here. 

Think of a learning experiment in which a subject is seated before a box 
with two lights and is asked to predict on each trial whether the red or the 
green light will come on. After his response (AI:red, A2 :green), one of the 
lights comes on (Et:red, E2 :green), thus informing him whether his predic­
tion was correct or incorrect. (To say that response ~ is reinforced means 
that reinforcing event Ei occurs.) The experimenter controls the choice 
of EI or E2 by adopting a reinforcement schedule as specified in Table 1. 
Each entry in the table is the probability with which the experimenter 
makes her choice (EI or E 2 ) following observation of the subject's predic­
tion (AI or A 2 ). 

Subject's 
Prediction 

Experimenter's Choice 

EI E2 
I-a 

b 
a 

1-b 

Table 1. Experimenter's Reinforcement Schedule. 

We first consider the special case a = 0.5, b = 1. This reinforce­
ment schedule means that if the subject chooses AI, then he is rewarded 
(reinforced) with probability 0.5, i.e., he has a 50-50 chance of being told 
he made the correct prediction. But if the subject chooses A2 , then he is 
certain to be told he made the wrong prediction and so is sure not to be 
rewarded. 

The task is to determine the subject's behavior after a large number 
of such trials. Does he ultimately learn always to make response At? 

In the stimulus sampling model, one imagines the existence of two 
constructs, so-called stimulus elements labeled 8t and 82. Each stimulus 
element is conditioned to exactly one response (either At or A 2 ) at the 
start of each trial. The subject decides which response to make on each 
trial by first choosing at random one of the two stimulus elements. (81 and 
82 therefore each have probability 1/2 of being chosen.) He then makes 
that response identified as the one to which the selected stimulus element 
is conditioned. 

The experimenter then contributes EI or E2 according to the specifica­
tions of the reinforcement schedule. The selected stimulus element is either 
already conditioned to the reinforced response or it is not. If it is, then it 
stays so for the next trial. If it is not, then it becomes conditioned to the 
reinforced response with probability c (0 < c < 1) and therefore remains 
conditioned to the other response with probability 1 - c. 

A stimulus element not sampled (chosen) on a trial does not change its 
state of conditioning on that trial. And the probability c stays fixed and 
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1/2 1 jE,--A, ........ 1 

;

1/2 A,---A, 1 - c \ . r-A, .......• 1 

~E. 
~ 

(1/2)(112) = 114 

(112)(1/2)(1 - c) = (1 - c)/4 

A2········0 
CD 

\ C 

(1I2)(1/2)c = c/4 

~ r-A, ....••.. 2 

1/2 A. __ 1_A. ___ E, 

(1/2)c = c/2 

Starting 
state 
of the 
system 

Response 
to which 
sampled 
element is 
conditioned 

Subject's 
response 

~ A •....•... 1 (1/2)(1 - c) = (1 - c)/2 

Choice of 
experimenter 
based on 
reinforcement 
schedule 

Response 
to which 
sampled 
stimulus 
element 
becomes 
conditioned 

Final 
state 
of the 
system 

Path 
probability 

Figure 3. Tree diagram for transitions starting in state 1. 

is unaffected by the trial number or by the events occurring on preceding 
trials. 

Since a stimulus element is conditioned to either response At or A 2 , 

the number of elements in each conditioning state is known if we know how 
many are conditioned to response At. The state of the system is therefore 
defined as the number of stimulus elements conditioned to At. Thus the 
system can be in one of three states at any trial: state 0, state 1, or state 2. 

Exercises 9-13 complete the analysis of this Markov chain learning 
model. 

9. Use the rules of stimulus sampling theory to derive the following tran­
sition probability matrix: 

o 
o (1-C 

P = 1 c/4 
2 0 

1 
c 

1- 3c/4 
c/2 

2 

o ) c/2 
1- c/2 

Hint. The tree diagram in Figure 3 illustrates the computation of the 
transition probabilities in the second row, i.e., assuming the system 
starts in state 1. A similar analysis, starting with the system in state 0 
and state 2, produces the first and third rows of matrix P. 
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10. Check that P is a regular matrix, i.e., that there exists some positive 
integer k such that the matrix pk has all positive entries. 

11. From the theory of finite Markov chains (see Kemeny and Snell [20]), 
it follows that the regular transition probability matrix P has a unique 
fixed-point probability vector w. If w = (Wo WI W2), then 

Wo +Wl +W2 = 1 (8) 

and Wi is interpreted as the long-run steady state probability of finding 
the system in state i. The theory tells us that these probabilities are 
independent of the starting state of the system and can be determined 
by solving the vector equation 

w=wP 

(which is a system of three simultaneous linear equations for the un­
knowns Wo, WI, and W2) together with condition (8). Do this and thus 
show that w = (1/9 4/9 4/9). 

12. The subject makes response Al with probability 0 if the system is in 
state 0, with probability 1/2 if the system is in state 1, and with prob­
ability 1 if the system is in state 2. Using the steady-state probabilities 
calculated in Exercise 11, show that the limiting steady-state probabil­
ity that the subject makes response Al is 2/3. Thus our stimulus sam­
pling theory predicts that the subject will ultimately settle down to 
responding Al in about 2 out of each 3 trials. 

13. Keep all the assumptions of the stimulus sampling theory, but now 
assume the experimenter adopts the so-called "non-contingent" rein­
forcement schedule given by a = 1 - k, b = k with 0 < k < 1. This 
means that the experimenter chooses EI with probability k and E2 
with probability 1 - k no matter what the subject does. Show that 

(a) the transition probability matrix is now given by 

o 1 2 

o ( 1- kc 
P = 1 (I - k)c/2 

2 0 
1 !:.~/2 k~2). 
(l-k)c l-(l-k)c 

(b) the matrix P is regular. 

(c) the fixed-point probability vector is given by 

w = ({I - k)2 2k(1 - k) k 2). 

(d) the limiting probability with which the subject makes response Al 
equals k. 
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1. Introduction 

Chapter 5 
Glottochronology 

All languages change as time goes by. Dramatic evidence is given by 
Hockett [11, p.365j who presents nine passages, all in English, but originally 
written about a hundred years apart. The most current is a 1749 passage 
from The History of Tom Jones, the earliest from the Blickling Homily 
dated 971. His conclusion is clear: "a millenium of phylogenetic change 
has sufficed to alter English so radically that if a tenth-century Englishman 
and a twentieth-century Englishman or American could meet face to face, 
they would not understand each other at all." Some changes are mild and 
lead to words which are similar in sound and in meaning, often indicating 
a common origin. Examples of such cognates are the English "father," the 
German "Vater," and the Latin "pater." Other changes have led to non­
cognates, such as "equus" in Latin and "cheval" in French, corresponding 
to the English "horse." Words can be lost completely and new words can 
come into use. And the study of language change is not made easier by the 
fact that writing itself is a relatively recent event in the history of man's 
use of language. 

A branch of linguistics called glottochronology has developed in recent 
years to study the loss of words from the vocabulary of a language and 
the possibility of dating various events in the evolution of languages. The 
rate of replacement of vocabulary is studied and the percentage of basic 
vocabulary still shared by two presently distinct but related languages is 
used to estimate how long ago they ceased being a single language and 
began diverging. Our aim is to present a probabilistic model and derive 
some formulas for this analysis. The subject is complex, research is ongoing, 
and the method has provoked much controversy in the anthropological and 
linguistic communities. Let the reader keep in mind as our simplifying 
assumptions are made that the complexity of the subject is better captured 
in models and methods of analysis more sophisticated than the one we 
present. References to the literature of glottochronology are given at the 
end of this unit as a guide for further study. 

2. A "Death" Process for Words 
Although our interest is in dating the divergence time of two related lan­
guages, let us begin by analyzing the changes in a single language. Suppose 

65 
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one constructs a list of basic meanings referring to such common objects, 
situations, or actions for which every community, regardless of culture or 
environment, has words. Examples of such universal cultural meanings, 
expressed for convenience by English words and taken from a list prepared 
by Swadesh [20j, are "animal," "blood," "three," "to eat," "to die." In 
any language, each meaning in this basic list is expressed by a single word 
at each point of time. As time goes by, the language evolves and some 
of these words are replaced. We shall say a word "dies" if it is replaced 
by a non-cognate word and "lives" otherwise. Let us suppose there are N 
words in this basic list to begin with (at t = 0). Imagine keeping track 
of the words as time passes and denote by X t the number of words still 
alive (i.e., unreplaced by non-cognates) at time t > o. The death of words 
is regarded as a random (stochastic) process* about which we make the 
following assumptions: 

The process starts at time 0 with N words. During any short time 
interval of length h, each word has probability >"h + o( h) to die, where 
o(h) denotes a quantity of smaller order of magnitude than h, i.e., 

a quantity such that 0«:) -> 0 as h -> o. (The constant>.. > 0 
is a measure of the rate of decrease of the live word popUlation: 
the larger >.., the greater the probability that a word dies and the 
faster the population of live words diminishes in size.) We assume no 
interaction among words. Then if there are n words alive at time t, 
the conditional probability of one death occurring between t and t + h 
is n>..h + o(h), the conditional probability of no death in (t, t + h) is 
1-n>..h+o(h), and the conditional probability of more than one death 
in (t, t + h) is o(h).** 

Letting 
Pn(t) = Pr(Xt = n), 

we now show that these assumptions imply 

n == 0, 1, ... ,N. 

(1) 

(2) 

To prove this, we first derive a system of differential equations for the 
probabilities Pn(t) and then solve these to get the explicit formulas in (2). 

*The main consequence of the probabilistic model that follows is the exponen­
tial decrease over time of the average number of words still alive. Those who 
prefer on first reading to avoid the mathematical analysis and concentrate on the 
application to language dating can skip directly to equation (7). 
**These assumptions are familiar for the Yule process although our formulas will 
look a bit different since they are formulated for a stochastic process of pure 
death rather than pure birth type. See Feller [7] or Bailey [1] for a discussion of 
these processes. Our terminology (words "living" and "dying") is suggested by 
the usual applications to the growth of populations, where births and deaths of 
individuals rather than words are studied. The pure death process is used for the 
study of language changes in Brainerd [3]. 
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Assume n < N and observe the population of words at time t + h. The 
event that there are exactly n words alive at t + h has probability Pn (t + h) 
and can occOr in three mutually exclusive ways: (1) at time t there are n 
words alive and no deaths occur between t and t + h; (2) at time t there 
are n + 1 words alive and one death occurs between t and t + h; (3) at 
time t there are n + k words alive (2 ~ k ~ N - n) and k deaths occur 
between t and t + h. The probability for (1) is Pn(t)[1 - n)"h + o(h)], by 
our assumptions; the probability for (2) is Pn+1(t)[(n + 1)"h + o(h)]; the 
probability for (3) is Ef==-; Pn+k(t)[o(h)]. Noting that the product of any 
constant (in particular, a function not dependent on h) times a quantity that 
is o(h) is again o(h) and that the sum of a finite number of o(h) quantities 
is also o(h), we can verify that 

Pn(t + h) = Pn(t)[1 - n)..h] + Pn+1(t)[(n + 1)"h] + o(h). 

This can be written in the form 

As h --+ 0, the last term has limit zero. Hence the limit of the left-hand 
side, which we recognize as the derivative P~(t), exists and 

n = 0, 1, ... , N - 1. (3) 

The case n = N is special since the only way one can have all N words 
alive at time t + h is by having N words alive at time t and no deaths in 
(t, t + h). Therefore 

which leads to 
(4) 

Our claim is that the functions Pn(t) given by (2) are the solutions of the 
system of ordinary differential equations (3) and (4) provided we add the 
initial conditions 

Pn(O) = {O ~f n = 0, 1, ... , N - 1 
1 Ifn=N 

expressing the fact that we started with N words at time O • 

(5) 

• Solving the differential equation (4) together with the initial condition 
PN(O) = 1, we get 
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Substituting this into (3) with n = N - 1, we have to determine PN-1(t) 
from a linear first-order differential equation with constant coefficients: 

Multiplying by the integrating factor eA(N-l)t (see any differential equa­
tions textbook for this important technique) the equation becomes 

Integrating, then using the initial condition (5) to evaluate the constant of 
integration, we obtain 

This we easily check agrees with (2) when n = N - 1. Continuing in the 
same way, or more rigorously by using backward induction (Exercise 1), the 
solution (2) is established. (Another way of solving the system of ordinary 
differential equations (3) and (4), using generating functions and reducing 
the system to a single partial differential equation, is discussed by Bailey [1J 
and outlined in Exercise 2.) 

The solution (2) has the form 

(6) 

where p = e-At . These probabilities are recognized as the binomial dis­
tribution. It will be helpful to summarize some facts about these probabil­
ities from elementary probability theory. 

Lemma. Let an experiment consist of N independent trials on each of 
which an event either occurs, with probability p, 0 < p < 1, or does not 
occur, with probability 1 - p. Then the probability of the event occurring 
exactly n times in the N-trial experiment is given by bn in (6). Furthermore, 
the mean (or expected value of the) number of times the event occurs, 
defined by E~=o nbn , equals N p. 

It follows from (2) and this Lemma that 

(7) 

i.e., on the average the number of words remaining unchanged decreases 
exponentially with time. (See Exercise 3 for a different derivation of (7) that 
does not require the explicit solution of the system of differential equations 
(3) and (4) and thus makes no use of the binomial distribution.) The 
same exponential decay is familiar for the decomposition of a radioactive 
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substance. In fact, equation (7) is referred to as "morpheme decay." (For 
our purposes, the linguistic term "morpheme" can be replaced by "word.") 

It is customary to take 1000 years (one millenium) as the unit of time. 
From (7), 

_}.. E(Xd 
e =~=k, say. 

The quantity k is the average number of words alive (i.e., not replaced by 
non-cognates) in one millenium. Linguists have studied many languages 
and their changes over time. Table 1, adapted from Lees [15], shows for 
thirteen languages the estimated value of k, the proportion of words alive 
at t = 1. 

Language 
Proportion k of Words 

Alive per Millenium 

1. English .766 
2. Spanish .790 
3. French .776 
4. German .854 
5. Coptic .760 
6. Athenian .836 
7. Cypriote .829 
8. Chinese .795 
9. Swedish .854 

10. Italian .839 
11. Portuguese .806 
12. Rumanian .764 
13. Catalan .793 

Table 1. Morpheme decay, after Lees [15, p.1l8]. 

Lees used a basic list of 215 English words and obtained the most 
common colloquial terms of each language at an older and again at a more 
recent stage of its development. The two stages were able to be dated 
independently. Corresponding morphemes were compared to determine the 
proportion of cognate word pairs shared by the two stages. The values of 
k were then calculated for the standard time unit of one millenium. 

The evidence in Table 1 suggests a certain similarity among languages, 
but linguists agree that the replacement rate A and hence k varies not only 
from language to language but from meaning to meaning within a single 
language. Recent work of Dyen, James, and Cole [6] and Kruskal, Dyen, 
and Black [13,14J takes account of the variation in A, but we shall follow 
the early writers by ignoring this variation. In fact, we assume from now 
on that 

e-}.. = k = .8, (8) 

the average of the values of k in Table 1. (Actually, these k-values have 
mean .805 and standard deviation .03.) As Lees [15, p.119] optimistically 
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summarized his data: "We take this to mean that on the average about 
80% of the basic-root-morphemes of a language will survive as cognates 
after 1000 years, for all languages, at all time." 

3. Comparing Cognates in Two Languages 

Now we come to the comparison of two related languages and the estimate 
of their date of divergence from a common source language. The splitting 
of one language into two surely occurs over a considerable period of time 
and interaction between users of the developing languages must be the rule 
rather than the exception. Nevertheless, the simplifying assumptions are 
made that the separation occurred at a particular moment in time and 
that the two emerging languages develop independently from that moment 
on. We can do no better than quote Kruskal, Dyen, and Black [13, p.367]: 
"However, our assumptions are good enough so that we can learn a good 
deal. With the aid of what we learn, we will be able to improve the 
assumptions. Use of partly true ideas as a tool for further learning is a 
classic method in science." 

With a list of basic meanings before us, we see what words in each of 
the two languages being compared are used for each meaning. Some of these 
will be cognates representing words from the common source that have not 
been transformed, that are still "alive" in our terminology. Others will have 
"died" with non-cognates appearing in their place in the two languages. 
Starting with N items in the list of basic meanings, we let St denote the 
number of words shared as cognates in the two languages after time t from 
the moment of separation. 

The probability that a given word in one of the languages is still alive 
at time t is e-)"t. (This can be seen directly from (2) by putting N = 1 
and noting that Pl(t) = e-)"t.) Since the two languages are assumed to 
develop independently and with the same value of the parameter A, the 
probability that the words in both languages for a given basic meaning 
are shared (i.e., both are "alive") is (e-)..t)2 or e-2)..t. The N meanings in 
the list form N independent trials, each leading to success (corresponding 
words in the languages are cognates) or to failure (corresponding words are 
non-cognates). Hence, according to the Lemma, we are led to the binomial 
distribution for the random variable St. By (6), 

B = 0, 1, . .. ,N. (9) 

Now at a certain known date but of course an unknown value of t, a 
linguist analyzes the two languages using a given list of N basic meanings 
and determines an empirical value, say Be, for St. Is there a way to 
estimate the corresponding value of the separation time t? We argue as 
follows. The probability of obtaining the experimental value Be is given 
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by (9) with B = Be. This probability depends on the unknown value of 
t since all other quantities (N and A) are assumed fixed and known. Let 
us choose as our estimate of t that value which makes the probability of 
obtaining the actual experimental outcome Be as large as possible. This 
is the important method of maximum likelihood estimation. (See Mood, 
Graybill, and Boes [17, p.276 ff.] for a full discussion and Exercises 4-6 for 
additional applications.) 

Our estimation procedure is therefore as follows: Set S = Be in (9) and 
find the value of the separation time t, say t, for which PreSt = se) is 
maximized. Then t is the maximum likelihood estimate for t. It is easier 
(and we get the same value for t) if we maximize the logarithm of the 
probability rather than the probability itself. Now 

Differentiating and setting the derivative equal to zero, we have 

and solving for t yields 
A -log (Se/N) 
t = 2A . (10) 

(We leave for the reader the verification, by the second derivative test or 
otherwise, that this does indeed supply a maximum value.) Since we have 
assumed in (8) that e-).. = k = .8, we have A = .223 and so our estimate 
for the separation time of the two languages is 

t = -(2.24) log (se/N). (11) 

The fraction (Be / N) is the experimentally observed proportion of the N 
pairs of test words which are shared (cognates) in the two languages. Al­
though other more favorable results are available, let us conclude with data 
from Lees [15J on the comparison of Modern German and Modern English. 
He found 124 cognates (58.5%) in a total of 212 comparisons. By means of 
equation (11), 

t = -(2.24) log(.585) = 1.2 millenia, 

or, counting back from the year of Lees' work, about the year 750 A.D. 

This estimate is too late by several centuries since the Germanic invasions 
of Britain began about 450 A.D. 

Two observations seem appropriate at this point. First, a very rough 
calculation can be used to check that the value t = 1.2 is about what 
should be expected from our theory. We have assumed that k = 80% 
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of the basic words survive as cognates after one millenium. For two lan­
guages developing independently we therefore would expect 64% of the 
basic words to survive after one millenium. Even linear extrapolation then 
produces approximately 1.2 millenia as the elapsed time corresponding to 
Lees' observed survival value of 58.5%. 

Second, the 300-year discrepancy in our estimate can easily be made 
up if the value of k, taken as .8 in our derivation, is raised to some value 
between .83 and .84. (A glance at Table 1 shows that the value of k for 
German was .854.) The sensitivity of the value of t to the assumed value of k 
reinforces the need for more sophisticated analyses that take into account 
the variation in k among languages and also among basic meanings within 
a single language [6, 13, 14]. 

The oversimplified model we have presented will perhaps serve as an 
incentive for further study by interested readers. For a flavor of some of 
the controversy surrounding glottochronology, see Chretien [4] and van der 
Merwe [21]. The former's misunderstandings are dealt with by Dobson, 
Kruskal, Sankoff, and Savage [5] and the latter's contribution is followed 
by comments from 17 critics, some friendly and others less so. An earlier 
contribution by Bergsland and Vogt [2] also is accompanied by numerous 
commentaries. Early references can be found in Gudschinsky [8], and an 
article by Hymes [12] summarizes developments up to 1960. Much of the 
early literature dealt with deterministic rather than stochastic models. For 
the latter, see Brainerd [3] and Sankoff [19]. In the work of Kruskal, Dyen, 
and Black [13, 14] one finds powerful computer techniques and new methods 
of data analysis brought to bear on the problems of reconstructing language 
trees. Guy [9] uses computer simulation to study the lexical diversification 
of language families. In another monograph [10], he uses computer tech­
niques to count sound correspondences between words in two languages 
and explores the possibility of producing phylogenetic classifications based 
not on the commonly used proportions of shared cognates, but rather on 
measures of language similarity obtained from tables of such sound cor­
respondences. 

Exercises 

1. Use backward induction to prove rigorously that the probabilities Pn(t) 
given by (2) are the solutions of the system of differential equations (3) 
and (4) with initial conditions (5). 

2. To solve the system of differential equations (3) and (4) with initial 
conditions (5) by the method of generating functions, proceed as fol­
lows. 
Step 1. Define the generating function 

N 

G(s, t) = 2: Pn(t)sn. 
n=O 
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Note that 

N 
BC '" D () n-l & = L..J £n t ns , 

n=l 

and use (3) and (4) to show that 

BC BC 
>..(s -1)& + 7ft = O. (12) 

Show further that the initial conditions (5) imply 

(13) 

This step has thus transformed the problem of solving a system of 
ordinary differential-difference equations to that of solving a single 
partial differential equation. 

Step 2. Use a result from the theory of partial differential equations 
to show that the general solution of (12) is given by 

( eAt) 
G(s,t) = \11 s -1 

where \11 is an arbitrary function. * 
Step 3. Use the initial condition (13) to show that 

and hence that 

1 
\I1(w) = (1 + _)N 

w 

(14) 

Step 4. From the definition of the generating function, observe that 
Pn(t) is the coefficient of sn in G(s, t). (This is the sense in which 
the function G generates the sequence of probabilities {Pn(t)}.) Note 
frbm (14) that C(s, t) is of the form (a + b)N and use the binomial 
expansion to show that 

the familiar solution given by (2). 

*See Martin and Reissner [16, pp.255-265] for a discussion of the partial 

differential equation P:: + Q:: = R where P, Q, and R are functions of x, y, 

and z. The result needed here is the special case R = O. 
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3. The derivative of E(Xt ) in (7) was based on the explicit solution of the 
system of differential equations (3) and (4) with initial conditions (5). 
Here is an alternative method of finding E(Xt } without first solving 
the differential equations. Let 

and 

N 

E(Xt ) = L kPk(t) = ml(t), say, 
k=O 

N 

E(X~) = L k2 Pk(t} = m2(t), say. 
k=O 

Differentiate ml and use (3) and (4) to show that 

(15) 

Note that the initial conditions (5) imply ml(O) = N. Solve the simple 
differential equation (15) with this initial condition to show that 

ml(t) = Ne- At , 

as in (7). 

4. Consider n Bernoulli trials (think of coin tosses) with probability of 
success equal to p on each trial. Let X denote the total number of 
successes. Then X is binomially distributed, i.e., 

Pr(X = k) = (~)pk(l_ pt-k k = 0,1, ... , n. 

Suppose n such trials result in exactly r successes. Show that p, the 
maximum likelihood estimate of p, is given by p = r In, the proportion 
of successes obtained among the n trials. 
Hint. AB in the text, it is easier to maximize the logarithm of the 
likelihood Pr(X = r) rather than the likelihood itself. 

5. In the text, we noted that the random variable St is binomially dis­
tributed with p = e-2At and n = N trials. According to the previous 
exercise, the maximum likelihood estimate of p is given by 8 e l N. Using 
the so-called invariance principle for maximum likelihood estimators (if 
e is the maximum likelihood estimator of e, then h(e) is the maximum 
likelihood estimator of h(e), provided h has an inverse), show that the 
maximum likelihood estimate of t is given by 

, -log( 8 e l N) 
t = 2>- ' 

thus supplying another derivation of (10). 
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6. A coin with probability p for heads is tossed until the first head occurs. 
Suppose k tosses are required. Show that the maximum likelihood 
estimate of p is 11k. 

7. Consider the words corresponding to the list of N basic meanings in 
a single language. Equation (2) gives the (binomial) probability that 
n of these words are still alive at time t. Suppose that N = 100, 
k = e-}.. = .8, and t = 1. From equation (7) we know that the ex­
pected or mean value of Xl, the number of words still alive after one 
millenium, is 80. Using a table of binomial probabilities, verify that 
this number of words alive (a) is the most probable value of the random 
variable Xl, but (b) nevertheless has probability only 0.099. 

8. Suppose two languages L1 and L2 evolve, starting at t = 0, indepen­
dently from the same parent language. Let X 1(1) = X 2(1) = 80, i.e., 
each language has exactly 80 words (corresponding to a list of N = 
100 basic meanings) that are still "alive" at time t = 1. Then Sl, the 
number of words the two languages still have in common as cognates, 
depends on the particular words lost. If L1 and L2 lost exactly the same 
20 words, they will have 80 words in common. At the other extreme, 
if the two sets of words that have "died" do not overlap at all, then 
L1 and L2 will have only 60 words in common. Assume e-A = k = .8 
for each language, implying that an average of 20 words die in each 
language in one millenium. 

(a) Show that E(Sd = 64 words. 

(b) Given the result of part (a), we ask how likely it is in the situation 
considered here for L1 and L2 to have 64 words in common. Show 
that 

(c) Calculate P8 = Pr(Sl = 8 I X 1(1) = X 2(1) = 80) for 8 = 60, 61, 
... , 68 (these leading to values of P8 at least .01 to two decimal 
places) and thus verify the entries in the following table: 

8 60 61 62 63 64 65 66 67 68 

P8 .01 .05 .11 .19 .24 .22 .13 .04 .01 

(d) From the values in (c), calculate the mean value of 81 . 

9. Assume two languages Ll and ~ evolve independently from the same 
parent language, starting at time t = O. Let Xi(t) denote the number 
of words (corresponding to a list of N basic meanings) that are still 
alive in language Li at time t . Suppose the number of words shared 
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as cognates in Ll and L2 at time t is St. Show that 

(Formulas of this sort appear in Chretien [4, p.18] and Brainerd [3, 
p.77].) 
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Chapter 6 
Probability Models for Mobility 

1. The Basic BKM Markov Model 

We are a mobile society. Movement up the social ladder, movement among 
occupations and ranks in employment, movement from one residentialloca­
tion to another are all routine. It is not surprising that mobility has 
been studied at great length by social scientists, especially by sociologists, 
economists, and demographers. Many probability models have been in­
troduced in an attempt to understand the possible dynamics of the ob­
served transition process among social, occupational, income, or geographic 
states followed by subjects in studies of social, occupational, income, or 
geographic mobility. One seeks some reasonably concise set of assumptions 
of how people behave that will fit experimentally obtained mobility data. 
As we shall see, the simplest Markov chain model assuming a homogeneous 
population produces theoretical projections that deviate significantly from 
observed values. Much subsequent research was therefore focused on de­
veloping ways to accommodate population heterogeneity. Our aim here is 
to survey a small part of this work, following a line of research initiated 
by Blumen, Kogan, and McCarthy (BKM) [3] in their study of intragenera­
tionallabor mobility. 

These authors studied quarterly data for the years 1947-49 obtained 
from a sample of all workers who, according to the files of the Bureau of 
Old Age and Survivor Insurance, were in covered employment since the 
inception of the social security system in 1937. Workers were distinguished 
by sex and age (only age groups 20-24, 40-44, 60-64 were sampled) and 
industries were coded into eleven categories. For example, one category 
included all those in agricultural farms, forestry, and fisheries, another 
included all workers in banks, insurance, and real estate, and the eleventh 
category was set aside for those who were unemployed. Each person's work 
category was recorded for each quarterly period and the resulting pattern 
of labor mobility was the object of the study. 

A brief review of the simplest probability model considered by BKM 
will help establish some key ideas and notation. Time is a discrete variable 
with 0 as the initial time and successive periods (quarters in BKM) labeled 
1,2,3, .... An individual is located at any time in exactly one of the possible 
states (work categories in BKM) numbered 1,2, ... , N (N = 11 in BKM). 
The essential requirement of a model is that it specify the way in which 

79 
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changes in state occur. Let us assume these are governed by transition 
probabilities which are independent of time. Let Pii denote the probability 
that a worker ends up in state j after a single time period, given he is in 
state i at the beginning of the period. Since i and j vary from 1 to N, 
there are N 2 transition probabilities in all and these are arranged in an 
N X N transition probability matrix 

(1) 

This matrix has nonnegative entries, of course. Its row sums equal 1 since 
a worker, starting from any state, must end up in exactly one of the N 
possible states after one period of time. In symbols, for i, j = 1,2, ... ,N, 

N 

LPii = 1, 
i=1 

Pii > O. 

Let f~n) denote the probability that a worker is in state i at time n. These 
state probabilities at time n are conveniently arranged in a row-vector 

(2) 

known as the state probability vector at time n. (These vectors, for n = 
0,1,2, ... , have nonnegative entries whose sum is 1.) We shall assume the 
initial state probability vector reO) is given. This vector specifies the initial 
distribution of workers among the occupational categories. The transition 
probability matrix P specifies the way in which transitions from one work 
category to another take place from one time period to the next. 

The matrix P and vector reO) together define a Markov chain with 
states 1,2, ... , N. The theory of Markov chains is well developed and only 
some basic results without proofs are included here. Many references, at 
various levels of difficulty and comprehensiveness, are available for further 
study. One can consult sections on Markov chains in such texts for begin­
ners as Chung [7], Snell [43], Maki and Thompson [27], and Gaver and 
Thompson [12]. Among the many references at a more advanced level, we 
suggest the appropriate chapters in Feller [10] or Bhat [2], as well as the 
more comprehensive books by Chung [6], Isaacson and Madsen [20], and 
Kemeny and Snell [22]. 

One more bit of notation is needed. Let p~j) denote the n-step transi­

tion probability of going from state i to state j. That is, p~j) is the condi­
tional probability that a worker ends up in state j at time n given he starts 
in state i at time O. (The transition probability Pii already defined is the 
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one-step transition probability p~?, but the superscript is suppressed for 
convenience.) In the same way that the Pij form the matrix P, the prob-

abilities p~j) are arranged in a matrix denoted p(n), the n-step transition 
probability matrix. 

From the theory of Markov chains, the following results will be needed. 

Result 1. To go from state i to state j in n steps, one must go from state i 
to one of the N states, say k, in one step and then go from state k to state j 
in the remaining n - 1 steps. Hence 

N 
(n) ~ (n-l) 

Pij - L..., PikPkj 
k=l 

or, in matrix notation, for n = 2,3, ... , 

pen) = pp(n-l). 

By repeated application of this recursive equation, we have 

pen) =pn, (3) 

i.e., the n-step transition probability matrix is the nth power of the one-step 
transition probability matrix. 

Result 2. To be in state j at time n requires being in one of the N states, 
say i, at time n-l and then moving from state i to state j in the remaining 
time period. Hence 

N 

f en) - ~ f(n-l) .. 
j - L..., i p'J 

i=l 

or, in vector-matrix notation, for n = 1,2, ... , 

r(n) = r(n-l) P. 

Repeated application of this recursive equation yields 

r(n) = reO) pn. 

(4) 

(5) 

In words: to find the vector of probabilities with which the various states 
are occupied at time n, the corresponding state probability vector at the 
initial time 0 is multiplied by the nth power of the transition probability 
matrix. 
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Result 3. Suppose P is a regular matrix, i.e., either P itself or some power 
of P has all positive entries. (This condition is not necessary for the result 
to follow, but it is an acceptable and convenient sufficient condition. See 
the discussion in McFarland [30, p.469,472j.) Then as n ----. 00, 

pn----.w (6) 

where the matrix W has the following properties: 

( a) W has identical rows, each equal to a vector w = (WI W2 •.. W N ), 

whose entries are positive and add to 1, i.e., 

N 

Wi > 0 and L Wi = 1. 
i=1 

(7) 

(b) The row-vector w is the unique fixed-point probability vector as­
sociated with the transition probability matrix P. This means w 
is the only vector whose components satisfy (7) and which is a 
solution of the system of equations given by 

w=wP. (8) 

(Satisfying (7) makes w a probability vector. Satisfying (8) makes 
w a fixed-point vector of P, since post-multiplying w by P leaves 
w fixed.) 

(c) As the number of transitions increases, we have 

lim f~n) = Wi (9) 
n--+oo 

or, in vector notation, 
ren) ----.w. (10) 

This follows readily (Exercise 1) from (5) and (6), together with 
Result 3(a), but it has an important interpretation. The limit­
ing value Wi is the long-run equilibrium (sometimes referred to as 
steady state or invariant) probability of finding a worker in occupa­
tional category i. Note the fact, typical of Markov theory, that 
this long-run equilibrium probability does not depend on the initial 
state probability vector reO). In practical applications, one finds 
that after a sufficient passage of time, the probability of being in 
any particular state depends only on the various transition prob­
abilities and not on the initial state. In view of (8), this long-run 
probability distribution of being in the various states is stable or 
unchanging as the process continues. (But see Feller [10, p.395j for 
a discussion of the subtle meaning of this equilibrium condition.) 
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Before returning to the BKM labor mobility study, it will be helpful to 
list three crucial assumptions made in developing the Markov chain model 
just outlined. First, there is stationarity, i.e., the assumption that the tran­
sition probabilities are constant over time, that the same transition prob­
ability matrix P governs the movement of workers among work categories 
in every time period. Second, there is the so-called Markov hypothesis, i.e., 
the assumption that a worker's transition probability Pij depends only on 
his current work category (state i) and not on the history of past moves 
leading· to his present state. Third, there is the assumption of popUlation 
homogeneity, i.e., that all workers have the same transition probability 
matrix P. (These assumptions are too restrictive and unrealistic and are 
relaxed in subsequent studies.) 

It is the homogeneity assumption that allowed BKM to use the propor­
tion of all sampled workers making a given transition as an estimate of 
the corresponding transition probability. In this way they estimated the 
entries in the transition probability matrix P, obtaining a matrix P as their 
estimate. By (3) we know that higher-order transition probability matrices 
are powers of the first-order matrix P. Hence the theory predicts that after 
eight quarters, say, transitions should be governed by p8. But transitions 
of workers in the sample from the initial time to eight quarters later are 
recorded in the data and hence a comparison is possible between the tran­
sition probabilities actually observed and those predicted by p8 according 
to the Markov model. 

Work Category 1 2 3 4 5 6 7 8 9 10 11 

Predicted from p8 .217 .277 .412 .526 .568 .452 .427 .423 .242 .006 .293 

Observed .500 .649 .681 .749 .749 .756 .693 .745 .573 .013 .526 

Table 1. Comparison of diagonal elements from expected and observed eighth­
order matrices for males 40-44. Data from BKM [3, Table 4.8]. 

Table 1 summarizes one small part of such a comparison, recording only 
main diagonal elements or proportions remaining in the same work category 
after 8 periods. Notice that the diagonal elements of p8 underestimate 
the observed proportions. The Markov model predicts more "moving" 
than actually occurred and therefore less "staying" than the observed data. 
Another test of the Markov BKM theory using occupational mobility data 
was carried out by Mahoney and Milkovich [26J. 

2. The Stayer-Mover Model 

The significant discrepancy between data and theory has led to numerous 
modifications of the simple Markov chain mobility model. In BKM [3J one 
finds the so-called Stayer-Mover model in which the homogeneity assump­
tion is modified and it is no longer assumed that all workers have the same 
transition probability matrix. Now workers are of two types: Movers who 
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each have the same regular transition probability matrix denoted now by 
M, and Stayers who have as transition matrix the N X N identity matrix 
J with 1's on the main diagonal and O's elsewhere, i.e., who are sure to stay 
in the same work category from period to period. 

Let us define the N X N diagonal matrix 

(

81 0 ... 0) 
o 82 ••• 0 

S= .. . .. . .. . 
o 0 ... 8 n 

(11) 

where 8i is the initial fraction of workers in state i who are Stayers. Now 
we find 

if} = i 
if} ""' i 

since a worker starting in state i can end up after one period in the same 
state i in two ways: he is a Stayer and is sure to remain in state i or he is 
a Mover and has probability mii to remain. In matrix notation, we write 

p = S+(J - S)M. 

Continuing, we find by analogous reasoning, 

if} = i 
if j ""' i. 

(12) 

But M is a transition probability matrix and hence (by Result 1) two-step 
transitions of Movers are governed by M2. Therefore 

p(2) = S + (J - S)M2 

and more generally, for each positive integer n, 

p(n) = 8 + (J - S)Mn. (13) 

By assumption, M is regular and so (by Result 3) Mn -+ V as n -+ 00, 

where V is a matrix with identical rows, each the fixed-point probability 
vector, say v, associated with M, i.e., v = vM. But 8 + (J - 8)V, the 
limiting matrix for all workers does not have identical rows as it did in the 
Markov chain model. Now, 

r(n) = r(O) p(n) -+ r(0)[8 + (J - 8)V), (14) 

so the limiting probability that a worker starting in some work category 
ends up in a specified category does depend on the starting state. 
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Unknown parameters of the Stayer-Mover model are 81. 82, ... , 8N, 

the proportions of Stayers in the N work categories, and the transition 
probabilities mij of the Mover matrix M. Unlike the simplf! Markov chain 
model, the~e parameters cannot be estimated directly from longitudinal 
income data since an individual who stays in a given work category for 
two consecutive periods may be a Stayer or a Mover. Nevertheless, indirect 
methods of statistical estimation have been developed by Goodman [16]. 
BKM were able before this to obtain numerical estimates and once again 
compare predictions of the Stayer-Mover model with observed data. 

Work Category 1 2 3 4 5 6 7 8 9 10 11 

Predicted (Stayer-Mover) .516 .648 .691 .760 .768 .755 .698 .747 .582 .016 .554 

Observed .500 .649 .681 .749 .749 .756 .693 .745 .573 .013 .526 

Table 2. Comparison of diagonal elements from expected and observed eighth­
order matrices for males 40-44. Data from BKM [3, Table 6.7]. 

In Table 2, the proportions remaining in the same work category after 
8 periods are recorded. The extraordinary improvement in fit, as compared 
with Table 1 for the simple Markov chain model, is not as spectacular 
a success for BKM as one would think. For, as they themselves admit [3, 
p.131]: 

... stayer-mover model underestimates the fraction of workers show­
ing the same code group for quarters of fourth order, overestimates 
this fraction for quarters of eleventh order, and shows, on the whole, 
a random pattern for quarters of the eighth order. In other words, 
we have managed to "fit" the model to observed eighth order move­
ment with fairly good results, but this "fit" does not hold up too well 
for either shorter or longer periods of time. We speak of "fitting" in 
this instance because our estimates of the matrices Sand M depend 
fundamentally on the eighth order "observed" matrices. 

3. Further Modifications 

The basic theory has been modified in many ways in attempts to create 
more realistic models to explain observed mobility data. A few of these 
modifications are considered here. 

Instead of each worker making exactly one transition in each time 
period, let us assume transitions occur randomly in time. Suppose for 
the moment that we consider only workers with the same average number 
of transitions, i.e., with the same transition rate, say).. > 0, per unit 
time interval. All transitions of these individuals, when they occur, are 
assumed to be governed by the same transition probability matrix M. Let 
Tk(t) denote the probability that such an individual undergoes exactly k 
transitions in (O,t) and suppose the number of transitions occurring in time t 
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is a random variable following a Poisson distribution*, i.e., 

T (t) = e-}"t (At)k 
k k! k = 0,1,2, .... (15) 

Now p(I), the transition matrix at time t = 1 is obtained by averaging, 
noting that if k transitions happen to occur in time 1 then Mk is the 
corresponding transition matrix. Hence 

For time t = n, we have 

<Xl 

p(l) = L Tk(I)Mk. 
k=Q 

<Xl 

p(n) = L Tk(n)Mk 
k=Q 

= f e-}..n (AnM)k 
k=O k! 

= e-}..ne}..nM = e-}..n(I-M). 

(16) 

Due to the exponential form, this result is the n-th power of the result when 
n = 1. That is, 

(17) 

which is the same as the Markov chain property (3). When transitions occur 
rando:vtly in time according to a Poisson distribution and the population is 
homogeneous in its transition rate, this Markov property follows. 

Now suppose we relax the unrealistic assumption that all workers have 
the same transition rate. In fact, let there be m types of workers differing in 
their transition rates, with a proportion Ii of all workers having transition 
rate Ai. (Of course, 11 + h + ... + 1m = 1.) Reinterpreting Tk(t) as the 
probability that a worker chosen at random from the entire population 
makes k transitions during (O,t), we have 

T (t) = ~ f-e-}";t (Ait)k 
k 6. ~ k!· (18) 

Finally, suppose population heterogeneity is characterized not by a finite 
number of distinct groups each with its own transition rate, as in (18), 

*Two different derivations of the Poisson distribution as a probabilistic description 
of "random events occurring in time" can be found in Feller [10, pp.156,446]. It 
is easy to verify that Tk(t) > 0 and L~=o Tk(t) = 1 so (15) specifies a bona fide 
probability distribution. Also, the mean number of transitions in (O,t) is given 
by the sum L~=o kTk(t) = At, so the mean number of transitions per unit time 
is A, as claimed. 
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but rather by a transition rate that is a continuous random variable with 
probability density function f defined for A > 0. Then (18) becomes 

roo (Ai)k 
rk(t) = 10 f(A)e-'AtT! dA. (19) 

Spilerman [45] assumes f is the gamma density, 

f(A) = ~Aa-le-b'A 
r(a) 

A > 0, a > 0, b > 0, (20) 

where 

f(a) = 1000 
xa-1e- x dx. 

It is then a straightforward calculation (Exercise 4) to show that 

( a + k - 1)( t )k( b )a 
rk(t) = k b+t b+t' (21) 

so the number of transitions made by a random worker 
according to the so-called negative binomial distribution. * 

Returning to (16) with rk(l) given by (21), we now have 

IS distributed 

p(1) = (_b )a ~(_l)k(-a)(~)k 
b+1 6 k b+1 

(22) 

( b )a( M )-a 
= b+1 I- b + 1 ' (23) 

the convergence of the infinite matrix series being assured by virtue of the 
fact that all the eigenvalues of M f(b + 1) are less than one in absolute 
value. ** 
*The name "negative binomial" arises from use of the following identity for 
binomial coefficients in (21): 

See Feller [10, p.165j. 
**When x is a scalar, we know the binomial expansion 

f: (~a }_l)kXk = (1 _ x)-a 
k~O 

is valid provided Ixl < 1. The corresponding matrix expansion 

f: (~a}_l)kAk = (J _A)-a 
k~O 

is valid provided all the eigenvalues of the square matrix A are less than one in 
absolute value. See Gantmacher [11, p.113j. In (22), A = M j(b + 1) and M, 
being a transition probability matrix, has 1 as its largest eigenvalue. Since b > 0, 
the eigenvalues of A are indeed all less than one in absolute value and the step 
from (22) to (23) is valid. 
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We refer to Spilerman [45] for further development of this extension 
of the Stayer-Mover model. He shows how to estimate the parameters a 
and b as well as the matrix M from empirical data on observed transitions 
in the population of workers, discusses testing the model, works through 
an example using simulated data, mentions the use of the "spiked gamma" 
(reserving a positive probability for Stayers, corresponding to ~ = 0), and 
finally applies the model to real data on residential mobility in the United 
States. 

The foregoing extension, like the Stayer-Mover model, modified the 
homogeneity assumption of the basic Markov chain model. Heterogeneity 
of the population was expressed by variations in the rate of mobility among 
workers. But all workers follow the same transition probability matrix and 
the transition rate ~ for each individual is fixed over the entire period 
of observation. Critiques of this assumption and other ways of handling 
the temporal variation in the parameter>" are discussed by Ginsberg [15], 
Mayer [28], and Sorensen [44]. The assumption of a single transition matrix 
for all workers is dropped by McFarland [30] and Spilerman [46]. 

McFarland keeps the Markov property, the stationarity and regularity 
assumptions of the simple Markov chain model, but abandons population 
homogeneity by assuming different workers can have different transition 
probability matrices. He introduces a parameter m and lets P(m) , with 
entries PiAm), denote a transition probability matrix of type m. (The 
Stayer-Mover model has m = 2 types of transition matrices. See Exercise 
5.) How shall these matrices be combined so as to obtain a mean one­
step transition matrix, say Q, for the entire popUlation? Let X(m) denote 
the diagonal matrix whose i-th diagonal entry xi(m) is the proportion of 
workers in category i at time 0 who move according to the transition 
probability matrix P(m). Then the expected proportion of workers in 
category i at time 0 who end up in category j at time 1 is given by 

m 

where the sum is taken over all possible values of the parameter m. In 
matrix notation, 

Q = LX(m)P(m). (24) 
m 

Similarly, since those workers with transition probability matrix P(m) have 
n-step transition matrix pn(m), the average or mean n-step transition 
matrix for the entire population is given by 

(25) 
m 

Because of the weighting factor X(m), now Q(n) is not in general equal to 
the n-th poweJ;" of Q. Since P(m) is regular, pn(m) _ W(m) as n - 00, 
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where W(m) has identical rows, each row being the unique fixed-point prob­
ability vector associated with the matrix P(m). Letting n -+ 00 in (25), 

Q(n) -+ L:X(m)W(m) = Q*, say. 
m 

Now the constant limiting population transition matrix Q* need not, as 
in the basic Markov chain model, have identical rows. It follows that the 
long-run proportion of workers in a given state will, in general, depend on 
the initial state distribution. 

The averaging represented by (24) has an important consequence which 
relates it to the so-called Cornell Mobility Model (see McGinnis [31], Henry, 
McGinnis, and Tegtmeyer [17]). In this model an assumption of "cumulative 
inertia" or "duration of stay" is made: the longer in one's current work 
category, the higher the probability of staying there for yet another time 
period. Thus the transition probability of going from state i to state j in 
n periods of time depends not only on i, j, and n (as in Markov models) 
but also on how long the worker has been in state i. The process is now 
non-Markovian, a fact that creates analytic difficulties. Comments on the 
cumulative inertia hypothesis, tests of its applicability, and extensions can 
be found in Hodge [18], Land [24], Morrison [32], Myers, McGinnis, and 
Masnick [33], Schinnar and Stewman [40], and Tuma [49]. Ginsberg [14] 
has reformulated McGinnis' assumptions so changes of state occur accord­
ing to a Markov chain, but the time intervals between changes are ran­
dom variables. Such a stochastic process is known as a semi-Markov or 
Markov renewal process. He also discusses the relation of this more analyti­
cally sophisticated mobility model to the Stayer-Mover model of BKM. 
Gilbert [13] extended Ginsberg's model to include open system mobility 
processes, i.e., ones allowing migration of new workers into the system. For 
a treatment of semi-Markov and related stochastic processes, see the paper 
by Pyke [37] or the appropriate sections of the books by Hoel, Port, and 
Stone [19], Karlin [21], or Ross [38]. The general issue of compatibility of 
observed data with a finite-state continuous time Markov process is treated 
by Singer and Spilerman [42]. 

The averaging in (24) of workers with different transition probability 
matrices also leads to observed declines in mobility rates over time, although 
the probabilities of movement do not themselves change for any worker. 
For, in McFarland's own words [30, p.470]: 

Now those who leave the given status during the first time interval 
differ from those who remain, in that the latter tend to be persons 
with higher probabilities of staying than the former. Thus the 
group remaining after one time period will have a higher average 
probability of staying than did the original group; and hence the 
expected proportion of the former group remaining throughout the 
second time period is larger than the expected proportion of the 
initial group remaining throughout the first time period. 
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Thus this model gives rise to empirical consequences which appear, 
at first glance, as if the probability of movement declines over time. 
But in fact the probabilities do not decline; it is just that those 
with high probabilities of movement tend to move early, and those 
still remaining after several time periods are predominantly persons 
with low probabilities of movement. 

We close this review by citing some additional references for further 
reading. Konda and Stewman [23] and Stewman [47] describe a number of 
Markovian models and also a vacancy chain model due to White [50] for 
individual mobility in an organization. Sandefur [39] uses a nonstationary 
Markov model to study job changes within and across organizations. An 
extensive analysis and evaluation of the state of Markov model building for 
intragenerational occupational mobility has been contributed by Stewman 
[48]. 

All of these models make the questionable assumption that individuals 
behave independently of each other, that interaction among individuals is 
absent. It would be more realistic to suppose that the transition probabil­
ities governing an individual's moves among occupational or social states 
depend on how all other individuals in the population are distributed among 
the states. Such so-called interactive Markov chain models were intro­
duced by Conlisk [8] and further studied by Brumelle and Gerchak [5] and 
Lehoczky [25]. They are likely to see increased use as the theory is devel­
oped. 

Finally, there are five books that deserve mention. McCall [29] makes 
significant use of the Stayer-Mover model in an attempt to understand in­
come mobility with special emphasis on poverty dynamics. Pullum [36] con­
centrates on quantitative techniques for detecting patterns or regularities 
in a mobility table. A chapter in Fararo [9] and an entire volume by 
Boudon [4] survey the mathematical and statistical literature on mobility. 
Bartholomew [1] concentrates on stochastic models and includes social and 
occupational mobility among social phenomena to which the mathematical 
theory is applied. 

Exercises 

1. Prove the final part (c) of Result 3 which asserts that as n -+ 00 

the state probability vector r(n) approaches the fixed-point probability 
vector w of the transition probability matrix P. In particular, note 
how the initial state probability vector r(O), present in formula (5) for 
r(n), disappears in the limit. 

2. This example of the Stayer-Mover model is taken from BKM [3, p.325]. 
Consider only three states of employment numbered 1, 2, 3 (three 
industries, say) with each worker occupying one of these states at each 
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time period (quarter year). At the start, 20% of all workers are in 
industry 1, 50% in industry 2, and 30% in industry 3. Suppose the 
proportion of Stayers in each industry is given by 81 = 0.40, 82 = 0.50, 
83 = 0.30 and that Movers follow the transition probability matrix 

(
0.90 0.05 0.05 ) 

M = 0.10 0.80 0.10 . 
0.20 0.20 0.60 

(a) Show that the fixed-point probability vector of M is 

(b) Show that 

w = (4/7 2/7 1/7). 

(
26/35 6/35 3/35) 

lim pen) = 4/14 9/14 1/14 . 
n-+oo 2/5 1/5 2/5 

(c) Compute limn -+oo fen) and show that in the long run about 41% 
of all workers end up in industry 1, 42% in industry 2, and 17% 
in industry 3. 

(d) Show that 31% of the workers in industry 1 after one quarter are 
Stayers and that 20% is the fraction of Stayers in industry 1 in 
the long run. 

3. In the basic Markov chain model, the transition probability Pij is the 
conditional probability of arriving at state j on the next trial, given 
that the worker is in state i now. Let Pij denote the conditional 
probability of coming from state j on the preceding trial, given that 
the worker is in state i now. 

/n) 
(a) Show that Pij = Pji f~~+I) for n = 1,2, .... 

(b) Suppose the Markov chain is regular with fixed-point probability 
vector w. Show that in the limit as n --+ 00, 

_ Wj 
PiJ' = Pji-· 

Wi 

(c) A Markov chain is said to be reversible if P = (Pij) is equal to 
P = (Pij), with Pij as in (b). Interpret such a probability process in 
terms of steady-state worker mobility among occupational states. 
(See Kemeny and Snell [22J.) 
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4. With rk(t) defined by (19) and f the gamma density in (20), derive 
the negative binomial distribution given in (21) for the number of 
transitions made by a randomly selected worker. (Hint. From the 
definition of the gamma function, integration by parts shows that 
r(a) = (a - l)r(a - 1). Repeated application starting with r(a + k) 
yields the formula 

f(a+ k) 
rea) = (a + k - l)(a + k - 2) ... (a + l)(a), 

needed in the derivation.) 

5. With notation as in the paragraph leading to equation (24), suppose 
there are m = 2 different transition probability matrices: P(l) = I, 
the identity matrix, and P(2) = M, an arbitrary transition matrix. 
Suppose xi(l) = 8i is the proportion of workers in occupational cate­
gory (state) i at time 0 who follow P(l). Show in this special case that 
the mean one-step transition matrix Q given by (24) reduces to the 
corresponding matrix (12) for the Stayer-Mover model. 

6. Let pea) = (1 ~ a 1 ~ a). Consider the following transition prob­

ability matrices governing trial-by-trial movements between two states: 
(i) P(l), (ii) P(1/2), (iii) P(O). In (i), there is complete immobility 
since the state is certain not to change from one trial to the next. 
Prais [34,35] defines a system with P in the form (ii) as showing perfect 
mobility. Here the final state is independent of the initial state since 
P has identical rows. The matrix in (iii) also represents an extreme of 
movement since the state is sure to change from one trial to the next. 

(a) Evaluate the determinant of each of the matrices in (i)-(iii) and 
note that det(P) can be taken as a simple measure of mobility in 
the 2-state case. 

(b) Would det(P) be a satisfactory measure for mobility for a transi­
tion probability matrix P with more than two states? 

7. Bartholomew [1, p.24j has suggested 

N N 

D = L L wili -ilpij 
i=l j=l 

as a measure of mobility. D is the overall mean distance traveled in 
one trial in the long run (Le., at equilibrium), where "distance" is the 
numerical difference between the beginning and the final state. Define 
D = 0 if Pii = 1 for all i. 

(a) If N = 2 and P is not the identity matrix, show that 

D = 2P12P21 . 

P12 + P21 
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(b) Evaluate D for the transition probability matrices defined in (i)­
(iii) of the preceding exercise. Does D appear to be a satisfactory 
measure of mobility in the two-state case? 

(c) Verify [1, p.25j that D = 9/14 if 

(
0.4 0.3 0.3 ) 

P = 0.2 0.5 0.3 . 
0.2 0.2 0.6 

8. In the basic N-state Markov chain model, suppose a worker is initially 
in state k and let X denote the duration of stay, i.e., the number of 
trials the worker is in state k before moving to another state. Assume 
no diagonal element of the transition probability matrix P is equal to 1. 

(a) Show that the discrete random variable X has a geometric dis­
tribution. 

(b) Show that E(X) = 1/(1 - Pkk). 

(c) Prais [34] suggests using the set of numbers 

• 1- wk 
Ilk = (k = 1,2, ... ,N) 

1-Pkk 

where Wk is the equilibrium long-run probability that the worker 
is in state k, as a measure of mobility. Show that Wk = Pkk and 
hence Ilk = 1 for the perfectly mobile system characterized by a 
matrix P with identical rows. 

9. Suppose transitions between two occupational states occur monthly, 
but observations of the worker population can be made only quarterly. 
The probability matrix 

P = (1/3 2/3) 
2/3 1/3 

is found to govern transitions from one quarter to the next. Show that 
the matrix 

1(1-1/~ 1 + 1/~) 
Q=2 1+1/~ 1-1/~ 

is the unique probability matrix which is the cube root of P, i.e., 
Q is the unique solution of the matrix equation P = Q3. (Thus 
the quarterly process governed by P can be embedded in the Markov 
chain with the month-by-month transition probability matrix Q. This 
numerical example is used by Singer and Spilerman [41, p.361] to 
illustrate the general embeddability problem for Markov models.) 
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10. Suppose transitions among three occupational states occur quarterly, 
but observations of the worker population are made only each six 
months. The probability matrix 

o 0) 
1 0 
o 1 

is found to govern transitions from one six-month period to the next. 
Thus, when viewed each six months, this appears to be a perfectly 
immobile population. Show, however, that the identity matrix I has 
the following four distinct square roots: 

(1 0 0) c= 0 0 1 , 
010 

each of which can describe the quarter-by-quarter transitions of an 
underlying Markov chain mobility model. Thus conclude that if special 
observations over a single quarterly period can be arranged, then the 
particular underlying Markov quarter-by-quarter transition probability 
matrix can be identified. But there is no way to discriminate among I, 
A, B, C as the underlying transition matrix if further observations are 
made at six-month intervals. (This example is taken from Singer and 
Spilerman [41, pp.361-363] who conclude that "it is often desirable to 
take observations at time points which are not evenly spaced if you 
want to discriminate between substantively distinct stochastic models 
all compatible with data from a few periods.") 
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1. Introduction 

Chapter 7 
Recall From Memory 

Much information, learned over the years by each of us and somehow stored 
in our brains, can be brought forward and made available when required. 
The way in which items are recalled from long-term memory was the subject 
of a series of experiments conducted by Bousfield and Sedgewick [3]. These 
authors asked subjects to name, as quickly as possible, as many cities in 
the U. S. as they can. For each subject, every name was recorded along 
with the time it was announced. Not surprisingly, responses occur at first 
rapidly and with relative ease. After a time, recall becomes slower and 
more difficult and the subject appears to be making an effort to bring forth 
new responses. 

The data reported by these authors and others who have studied free 
recall (for example, Indow and Togano [8], Johnson, Johnson, and Mark 
[9], Kaplan and Carvellas [lOJ, Patterson, Meltzer, and Mandler [16]) are 
consistent with the following hypotheses: (i) a subject has a finite number, 
say c, of relevant responses stored in memory and (ii) the rate at which 
responses are emitted is proportional to the number of relevant items in 
memory but not yet recalled. If n(t) denotes the number of items recalled 
by time t, these hypotheses are embodied in the differential equation 

dn 
- = k(c-n) 
dt 

(1) 

where k > 0 is the constant of proportionality. With the initial condition 
n(O) = 0, the solution of this differential equation is seen to be 

n(t) = c(l - e-kt ). (2) 

Two examples of experimental data illustrating this exponentially 
damped accumulation of recalled items are shown in Figure 1. Circles and 
crosses indicate the actual data obtained with university students in Tokyo 
who were asked to recall names of animals and of females, respectively. 
The corresponding fitted curves of the form (2) are also sketched. 

Most subjects report annoyance, especially in the latter part of the 
experiment, by persistent occurrences of already-mentioned names that 
cannot be counted again. To minimize repetition of previously recalled 
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Figure 1. Two Retrieval Functions (Indow and Togano [8, p.318]). 

items, suppose some constraint is placed on subjects that somehow restricts 
their memory search. For example, Indow and Togano report data from 
an experiment in which subjects were asked to list cities in Japan with 
the condition that they start from ·the furthest north and proceed toward 
the south. Without such a condition, the result has the exponential form 
seen in Figure 1. But with this restriction, the cumulative total number of 
items recalled becomes linearly dependent on time. (See Figure 2, where 
the records of two different subjects are plotted.) 
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Figure 2. Two Retrieval Functions With Scanning Route Predetermined (Indow 
and Togano [8, p.320j). 
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In this unit, the exponentially damped and the linear accumulation of 
recalled items will be generated in two versions of a probabilistic model of 
memory recall suggested by J. C. Falmagne and G. Iverson. 

2. The Model 
We make the following assumptions governing the content 'of memory 
(Axiom 1) and the rules for recall of items from memory (Axioms 2-4). 

Axiom 1. A total of c items (belonging to a particular category like U. S. 
cities, names of girls, etc.) have been faithfully coded and stored in memory 
by the subject. Each item is assumed to be equally accessible for recall. 

Axiom 2. Items are randomly sampled from memory, one at a time, 
and with replacement (Version A) or without replacement (Version B). 
Thus we have two versions of this Axiom depending on whether an item, 
once sampled, is replaced and can be sampled again (Version A), or is not 
replaced and therefore cannot be sampled again (Version B). 

Axiom 3. An item sampled is first examined as to its output status. It is 
itself output (Le., announced as a new response of the subject) if and only 
if it has not previously been output. 

Axiom 4. The times required for examining sampled items are indepen­
dent, identically distributed random variables, each with exponential den­
sity given by 

if t ~ 0 
if t < 0 

(3) 

where A > 0 is a positive constant. (The mean examination time, given by 
the integral 1000 tf(t)dt, is easily verified to equall/A.) 

This exponential density function can be understood as arising from a 
limit argument common in probability theory. (See, for example, Feller [6, 
pp.157,458].) Imagine time divided into processing units 1,2, ... in each of 
which an item recalled (an input to the processor) is examined and classified 
as a success (8) if new and therefore suitable for output, or as a failure (F) 
if unsuitable because of it having already been used. Suppose these inputs 
are independent and the probability of each being 8 is p. Let Tl denote 
the time (starting at t = 0) until the first output is made. then 

Pr(Tl :s; k) = 1 - (1 - p)k (k = 1,2, ... ) (4) 

since the event "Tl :s; k" means that at least one of the first k items is 8 
or, equivalently, that not all are F's. 

Now refine this discrete time scale by supposing inputs occur at time 
tl.t, 2tl.t, .... As tl.t -+ 0 we require that p also approach zero, but in such a 
way that the success rate l.t = A, say, stays fixed. Now if k -+ 00, tl.t -+ 0, 
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and kt::..t -+ t ~ 0, then in the limit, (4) becomes 

Pr(T1 ::; t) = lim [1- (1 - At::..t)~t] 
tl.t-+O 

= 1- e-).t, 

which is recognized as the cumulative distribution function corresponding 
to the exponential density function given in (3). (For other demonstrations 
of this exponential as the limit of the geometric distribution, see Bush and 
Mosteller [4] or McGill [13].) 

The following notation will be used in the analysis of Axioms 1-4 and 
their consequences. 

N(t) = number of items recalled from the initial time t = 0 to time t. 
Pn(t) = Pr(N(t) = n) (n = 0, 1, ... ,c). 

Tl = time from 0 to the first output item. 

Ti = ith inter arrival time, i.e., the elapsed time between the (i - l)st 
and the ith output item (i = 2,3, ... , c). 

Wi = waiting time from 0 to the ith output item (i = 1,2, ... ,c). 
Ki = number of examinations required to produce the ith new item for 

i = 1,2, ... , c, i.e., the number of examinations of sampled items when 
there are i-I items already announced, up to and including the examination 
which finally shows a sampled item to be new and not previous output. 

3. Outline of the Analysis 

Our aim is to obtain a formula for Pn(t). It will be helpful to keep in mind 
the following steps to be followed in reaching this goal. 

Step 1. Determine Pr(Ki = k), the probability distribution of the 
random variable Ki. 

Step 2. Determine Pr(Ti ::; tiKi = k), the conditional distribution 
function of the ith inter arrival time given the value of Ki and thus find 
the (cumulative) distribution function of Ti using the equation 

00 

Pr(Ti ::; t) = L Pr(Ki = k)Pr(Ti ::; tiKi = k). (5) 
k=l 

Step 3. Compute the probability density function of Ti by differen­
tiating its distribution function (5). 

Step 4. Determine the probability density function of the random 
variable Wj for j = 1,2, ... , c by using 

i 
Wj = LTi , (6) 

i=l 

an identity that follows directly from the meaning of the symbols. 
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Step 5. Determine Pn(t) by means of the formulas 

Pn{t) = {l - Pr{W1 :::; t) ~f n = 0 (7) 
Pr(Wn :::; t) - Pr{Wn +1 :::; t) If n = 1,2, ... , c. 

The formula for Po(t) follows from the fact that the event "N(t) = 0" 
means the waiting time until the first output item exceeds t. The formula 
for Pn{t) when n > 0 follows from the observation that one is left with the 
event "N(t) = n" when one deletes from the experimental outcomes for 
which the waiting time until the nth output item is at most t all those for 
which the (n + l)st output item also occurs by time t. To make (7) correct 
when n = c, the value 0 is assigned to Pr(Wc+l ~ t). 

4. The Derivation of Pn(t) 

We turn now to the details involved in carrying out these steps in the case of 
Version A (sampling with replacement in Axiom 2). Results are numbered 
lA, 2A, etc. to make their dependence on this version of Axiom 2 clear. The 
derivation of Pn(t) in the case of Version B of Axiom 2 (sampling without 
replacement) is left for the Exercises. 

Theorem lAo 

{ l ifk=l 
Pr(Kl = k) = 0 if k = 2,3, ... , 

and for i = 2,3 ... , c, 

where 
c-i+l 

Pi= 
c 

(8) 

(9) 

(10) 

Proof. If there are no items already announced, then the first sampled item 
is guaranteed to be the first output. Hence K 1 equals 1 with certainty as 
claimed in equation (8). If there ar~ i - 1 different items already recalled, 
then a randomly sampled item from the c available items is new with 
probability Pi given by (10). The event Ki = k means that the first (k -1) 
sampled items are not new and the kth item is new. Since sampling is with 
replacement the probability Pi is the probability that each sampled item 
is new and (1 - Pi) the probability that it is not new. Thus we are led to 
formula (9). Note that this formula, properly interpreted, actually includes 
formula (8) when i is put equal to 1. 

If k examinations are required for the recall of the ith item, then the 
ith interarrival time Ti is the sum of k independent random variables, each 
with the exponential density given by (3). The following Lemma will prove 
helpful in carrying out Step 2. 
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Lemma 1. Let X 1,X2 , ••• ,Xn be n independent and identically dis­
tributed random variables, each exponentially distributed with density 
function given by (3). Then Xl + X2 + ... + Xn has a gamma distribution 
with parameters nand >.., i.e., the sum has density function f given by 

{
>.. _}..x(>"x)n-1 

f(x)= oe (n-l)! 
if x 2::0 

if x < o. 
(11) 

This Lemma appears in many standard textbooks on probability, mathe­
matical statistics, and queueing theory. For a proof by mathematical in­
duction see Ross [17, p.114j. A proof using moment generating functions 
(Exercise 1) is given by Meyer [15, p.221j, and one using Laplace transforms 
by Kleinrock [12, p.71j. (In queueing theory, the gamma densities in (11) 
are referred to as the family of Erlang distributions.) 

From the Lemma and Axiom 4, the formula 

t (>..t)k-1 
Pr(Ti ~ tiKi = k) = 10 >"e-}"t (k _ I)! dt (k = 1,2, ... ) (12) 

is immediate. Step 2 is now done and Pr(Ti ~ t) can be written using 
(9) and (12) in formula (5). The resulting expression for the distribution 
function of Ti can be simplified: 

Since the probability density function of Ti is obtained by differentiation, 
we have proved the following result. 

Theorem 2A. The random variable Ti, the elapsed time between the 
(i - 1) st and the ith output item, is exponentially distributed with density 
given by 

J.(t) = { Aie-}";t if t 2:: 0 
• 0 ift<O 

(13) 

where Ai = >"Pi. (Note that A1 = >.., so (13), as expected, gives the correct 
exponential density for T1 and thus holds for i = 1,2, ... , c.) 
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Step 4 of our previously outlined program is next. Since we know 
Wj = TI + T2 + ... + Tj and the random variables Ti are independent, the 
following Lemma will be helpful in obtaining the density function of the 
W's from the known density function of the T's. 

Lemma 2. Let X and Y be independent random variables with density 
functions J and g, respectively. Suppose J(t) = get) = 0 if t < O. If h is 
the density function of X + Y, then 

h(t) = lot J(t - s)g(s)ds. (14) 

The integral in (14) is known as the convolution of the densities J 
and g. We omit a proof of this well-known result. See, for example, 
Meyer [15, p.257] or Ross [17, p.42].) A formula for the density function of 
Wj will be derived by use of this Lemma. 

Theorem 3A. Let gj denote the probability density function of Wj. Then, 
for any positive integer j, 

(15) 

if t 2: 0 and gj(t) = 0 if t < O. 

Proof (by mathematical induction). If j = 1, then WI = Tl and gl(t) 
should reduce to !t(t) as given by (13). This is what (15) reduces to if 
j = 1, so the induction is underway. 

Now suppose (15) is true for j = k and let us prove it is true for 
j = k + 1. Since Wk+1 = Wk + n+l, Lemma 2 yields 

The induction hypothesis permits replacing gk( s) by its expression from 
(15). Noting that Ak+1 = A(c-k)lc, simplifying, and making the substitu­
tion u = e-A8 / C in the integral, we find 

But u ds = (-ciA) du, so the integral is easy to evaluate. Simplifying and 
using Ak = A(C - k + 1)lc, we obtain 
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Since c - k + 1 ( c ) = (c) 
k k-l k ' 

equation (15) is verified when j = k + 1 and the proof by induction is 
complete This also completes step 4 of our program. 

To find Pn(t), note first that differentiating (7) yields 

dPn(t) {-gl(t) if n = 0 
~ = gn(t) - gn+1(t) if n = 1,2, ... , c. 

(16) 

Lemma 3. (17) 

Proof. The simplest and most direct, but also the most tedious proof 
uses (15) to write each term in equation (17). Algebraic simplification then 
shows that the left and right sides of the equation are indeed equal. We 
leave this for the reader and instead outline a more advanced, indirect, but 
computationally simpler proof using moment generating functions. 

Let Mn(s) denote the m.g.f. of Wn. Since Wn = Tl + ... + Tn 
and the T's are independent random variables, Mn is the product of the 
m.g.f.'s of TI, ... , Tn. But Ti is exponentially distributed with parameter 
Ai (Theorem 2A) so the m.g.f. of Ti is "Ad(Ai - s). Hence 

and 

Rearranging, 

In integral form, this means 

the last equality following after integrating by parts and noting that 
gn+1 (0) = O. Since 
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for continuous functions u and v implies u = v (the uniqueness property 
of the Laplace transform), the proof of identity (17) of the Lemma is 
complete. (Additional insight into this Lemma is given by McGill and 
Gibbon [14,. pp.7-9J, who relate it to a stochastic process and what they 
call the general-gamma distribution.) 

Using Lemma 3 and (16), it follows immediately that 

ifn =0 

if n = 1,2, ... , e. 
(18) 

Since all the densities gAt) in (18) are known from Theorem 3A, the deriva­
tive of Pn(t) is known and hence Pn(t) itself can be determined. Thus 

(19) 

and for n = 1,2, ... , e, 

(20) 

where C is a constant of integration. From the meaning of Pn(t) it is clear 
that 

{ 1 ifn=O 
Pn(O) = 0 ifn ~ o. 

Hence by integrating (19), 

poet) = e->-t. 

Since gn+1(O) = 0 from (15), the constant C in (20) must be zero and for 
n = 1,2, ... ,e, we have 

(21) 

(Note that this formula is also correct when n = 0.) We have thus proved 
the following result, to which all our efforts were directed. 

Theorem 4A. Pn(t), the probability that N(t) = n, is given by formula 
(21). In words: the number of items recalled by time t is binomially 
distributed with parameters c (corresponding to the number of Bernoulli 
trials) and l_e->-t/c (corresponding to the probability of "success" on each 
trial). 

Since the mean of a binomially distributed random variable with 
parameters n and p is np, if follows that 

E[N(t)] = e(l - e->-t/C), (22) 
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precisely the exponentially damped accumulation of recalled items cor­
responding to equation (2) and graphed in Figure 1. In the deterministic 
differential equation model leading to (2), the number of recalled items 
follows the exponential form. But in the stochastic model, this number 
becomes a random variable and it is the mean number of recalled items 
that has the corresponding exponential form specified in (22). 

Dispersion about the mean is measured by the variance, which is equal 
to np(1 - p) for a binomial random variable. In this case, 

It turns out that typical values of AI c, obtained from experimental data, 
are .4 or less. Therefore the variance of N(t) will be small compared to 
the mean, even for moderate values of t. These data (Indow and Togano [8, 
p.320j) also support the predicted relation k = AI c, obtained by comparing 
(2) and (22). 

In Exercises 2-4, a proof is outlined of the following counterpart of 
Theorem 4A, but assuming Version B, when the random sampling of Axiom 
2 is carried out without replacement. 

Theorem 4B. Pn (t) , the probability that N(t) = n, is given by 

and 

D ( ) _ (At)n -At 
£n t - e 

n! 
for n = 0, 1, ... , c-l 

t (A )c-l 
Pe(t) = 10 Ae-AX (c ~ I)! dx. 

(23) 

(24) 

In words: the number of items recalled by time t follows a Poisson distribu­
tion truncated at c. 

Were the Poisson distribution not truncated, the mean and variance 
of N(t) would each be equal to At. Therefore, from this stochastic model, 
we should expect an approximate linear dependence of the mean number 
of words recalled by time t on the elapsed time t, as seen in Figure 2. Both 
the large variance and the effects of truncation should produce a good deal 
of variation about this straight line. 

Thus the addition of a constraining condition (for example, "name 
all the cities you can, but proceed from north to south"), when subjects 
are instructed at the outset of the experiment, is made to correspond in 
the probability model to a change from sampling with replacement from 
memory (Axiom 2A) to sampling without replacement (Axiom 2B). As we 
have seen, this makes the mean number of recalled items change from an 
exponentially decaying growth to an approximately linear growth over time. 
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5. Final Remarks and Additional References 

Needless to say, although the stochastic model is of mathematical inter­
est and does capture a few of the gross features of some recall experi­
ments, it does not supply the kind of understanding of memory sought by 
psychologists. Complications arising even in the sort of recall experiment 
outlined here are discussed by Shiffrin [19,20). Experimental data are fitted 
to a hyperbolic function of the form 

net) = ctl(k + t) 

instead of the exponential in equation (2) by Gruenewald and Lockhead [7). 
The notion of independence VB. dependence of memory trace storage is 
examined by Rotondo [18]. A summary of what he calls "sample-and­
recognize models" as well as other models of retrieval from long-term 
memory is supplied by Baddeley [2, pp.288-299). 

Atkinson and Juola [1) and Kintsch [11) treat various aspects of long­
term memory, especially storage, retrieval, and search processes. Research 
on memory scanning is reviewed by Sternberg [21] who also discusses the use 
of reaction time methods to explore the processes involved in the retrieval of 
information from categories that are well-learned and presumably stored in 
long-term memory. (For short-term memory, see Deutsch and Deutsch [5).) 

Finally, there is a recent article by Wickelgren [22) which reviews the 
literature on memory coding, processing, storage, and retrieval. 

Exercises 

1. Let X 1 ,X2 , ••. ,Xn be independent, identically distributed random 
variables, each exponentially distributed with parameter )... The prob­
ability density function of Xi is given in (3). Let 

(a) Show that the moment generating function (m.g.f.) of Xi is given 
(for 8 < )..) by 

and conclude that the m.g.f. of Sn is [)../().. - 8))n. 

(b) Show that the m.g.f. of the gamma distribution with parameters 
n and A, with density function given in (11), is also [)../().. - 8 ))n. 
Thus complete the proof of Lemma 1. 
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Note. For the following exercises, assume Version B of Axiom 2. 

2. Prove: Theorem 2B. The random variable Ti , the elapsed time be­
tween the (i -1)st and the ith output item, is exponentially distributed 
with probability density given by (3). Hint. A number of steps needed 
in the proof of Theorem 2A can now be bypassed and Theorem 2B can 
be proved directly from the Axioms. 

3. Prove: Theorem 3B. The random variable Wn is gamma distributed 
with probability density given by (11). Note. This is the counterpart 
of Theorem 3A. 

4. Use the formulas in (7) relating Pn{t) and the cumulative distribu­
tion function of Wn to determine Po{t), Pn{t) for n = 1,2, ... , c - 1, 
and finally Pe(t). Thus verify (23) and (24), completing the proof of 
Theorem 4B. Hint. Pr(We+1 :::; t) = 0 since it is impossible to recall 
more than the c responses stored in memory. 
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Postscript 
There are a number of thoughts that come to mind after looking back 

over the preceding seven chapters. 
In constructing a probabilistic model of some real-world phenomenon, 

it is tempting to assume that certain events or random variables or succes­
sive trials of an experiment are statistically independent. The temptation 
arises not because this is always a realistic assumption (often it is not), 
but rather because it has nice mathematical consequences. With an in­
dependent trials process, for example, one associates probability Pj with 
outcome event Ej and then the probability of the joint occurrence of event 
sequences like E i , E j , Ek is given by the simple multiplicative rule as the 
product PiPjPk. One finds this independence assumption used throughout 
the foregoing chapters. 

But one also sees various ways of modifying this assumption. In a 
Markov chain model, the event Ek no longer has a fixed probability Pk 
since the outcome of any trial is made to depend on the outcome of the 
immediately preceding trial. In such a model, a conditional probability Pjk 
is associated with each pair of events Ej and E k. Given E j has occurred 
at some trial, Pjk is the probability that Ek occurs at the next trial. If the 
starting trial is numbered zero and the probability of the outcome Ei at 
trial zero is denoted by Pi, then an outcome sequence like Ei, Ej, Ek is now 
assigned probability PiPijPjk. Such Markov chain models were introduced 
in Chapter 4 (Stochastic Learning Models) and in Chapter 6 (Probability 
Models for Mobility). 

In Chapter 6, the simple Markov chain model was seen still to be 
an oversimplification of reality. Various ways of introducing yet more 
complexity into the model (two Markov chains, one for Movers and another 
for Stayers; transitions among states occurring randomly in time rather 
than at fixed time-points; etc.) have been studied. One line of research 
leads to more complicated and mathematically sophisticated semi-Markov 
or Markov renewal processes. 

These particular examples seem worth pointing out here because they 
illustrate a general principle in mathematical modeling. Of course, one 
wishes to make do with the simplest possible set of assumptions in order to 
make the model mathematically tractable. But real-world phenomena are 
rarely obliging and the results, when compared to actual data, are often 
disappointing. One then searches for ways to weaken the assumptions, to 
make the model more realistic, so it captures the essential features of the 
real-world phenomenon under study well enough for the purposes at hand. 
This method of introducing complexity in stages is very typical. What is 
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remarkable is how often useful results can be obtained from models that 
are still simple enough to be analyzed mathematically. 

Another feature worth explicit mention is exemplified by the stochastic 
processes introduced in Chapter 2 (How Many People Have Ever Lived?) 
and in Chapter 5 (Glottochronology). Now the system no longer depends 
on a discrete time parameter (with observations occurring only at fixed time 
points), but rather on a continuous time variable. In general, one studies 
the conditional probability Pjk(8, t), the probability of finding the system 
in state Ek at time t, given that at some previous time 8 the system was in 
state E j . Introducing time homogeneity makes Pjk( 8, 8 + t) depend only on 
the duration t of the time interval and not on 8 which signifies where the 
interval is located on the time axis. Finally, if the initial state (say, at time 
t = 0) is given, then we write Pk(t) as the absolute probability of state Ek 
at time t. 

Review of the birth and death process for population growth in Section 
2.2 and of the death process for words in Section 5.2 will show that the 
postulates from which these absolute probabilities are determined refer 
only to the behavior of the transition probabilities Pjk(h) for small values 
of h. What happens in a small time interval from t to t + h leads, as 
h approaches zero, to a system of difference-differential equations from 
which the unknown probabilities Pk(t) (for k = 0, 1, 2, ... ) are able to 
be determined by standard methods of analysis, often involving generating 
functions or transforms of one kind or another. Those who go on to 
study the theory of stochastic processes will see this important technique 
used time and again. (See, for example, the introductory treatment in 
Feller [4, Chapter XVII].) 

One cannot help observing in our seven chapters that the mean of some 
random variable is often taken as a quantity to be studied. In Chapter 2, 
it is the mean number of persons alive at time t, in Chapter 3 it is the 
mean net present value of a project that determines whether it is funded 
or not, in the simple learning model of Chapter 4 it is the mean number 
of response errors made by a subject that leads to statistical estimates of 
important model parameters, in Chapter 5 it is the mean number of words 
remaining unchanged at time t that forms the basis for language dating, 
and in Chapter 7 it is the mean number of items recalled by time t that is 
compared with experimental data. 

We have pointed out in Chapter 2 how a variable of interest in a 
deterministic model (say, number of persons alive at time t in the customary 
differential equation exponential growth model) is mirrored by the mean of 
the corresponding random variable in an associated stochastic model (say, 
the mean number of persons alive at time t in a birth-death stochastic 
model). Although the number of persons alive at time t is a random variable 
in the probability model, its mean value has the same exponential form as 
the solution of the corresponding deterministic differential equation model. 
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As Eigen and Winkler [3, p.23] put it: 

All the direct impressions and experience we receive through our 
senses reflect the macrocosm. But even in this realm, we have learned 
that events that are random if viewed individually are subject to 
deterministic laws in the context of large numbers. 

Another feature of the mean value in applied mathematics is its 
widespread use as an objective function in some decision or optimization 
model. One frequently seeks to minimize mean cost or to maximize mean 
profit, for example. And, as in Chapter 3, a funding decision can be based 
on a project's mean net present value. In a probability model, beginners are 
often tempted to replace a random variable by its mean and then to proceed 
with the analysis as if the random variable were this constant mean value. 
Unfortunately, this is not a valid procedure since the optimal decision is 
likely to depend not only on the mean but also on other features of the 
random variable. For example, in Problem 2 of Chapter 3, the decision on 
whether to fund a project depends not only on the mean completion time 
of the project but also on the nature of the probability distribution of the 
random completion time. 

Finally, we point out that our focus in this work has intentionally been 
quite narrow. We wanted to illustrate some important ideas and techniques 
of probability theory in the context of social science applications. That 
these topics in probability are widely used in the various social sciences is 
attested to by the fact that articles in over 60 different journals appear in 
chapter bibliographies. But much more, in probability and also in other 
branches of mathematics, must be learned and be available as tools for the 
analysis of social science phenomena. A glance at the contents of some 
recent books (Bartholomew [1], Bender [2], Kim and Roush [5], OIinick [6]) 
will show the variety of mathematical topics that have already been found 
useful for mathematical modeling in the social sciences. Many (linear 
programming and computer simulation, for example) are relatively newly 
developed. The beneficial symbiotic relationship between mathematics and 
social science is likely to continue and grow as mathematicians become 
increasingly interested in tackling the difficult problems arising in the social 
sciences and as social scientists increasingly emphasize the importance of 
mathematics in the training of their students. 
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